Dall'Osto Luca, Cazzaniga Stefano, Guardini Zeno, Barera Simone, Benedetti Manuel, Mannino Giuseppe, Maffei Massimo E, Bassi Roberto
1Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
2Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/a, 10135 Turin, Italy.
Biotechnol Biofuels. 2019 Sep 16;12:221. doi: 10.1186/s13068-019-1566-9. eCollection 2019.
Microalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection.
We applied two steps of mutagenesis and phenotypic selection to the microalga . First, a pale-green mutant (-) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. - showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of -, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains ). Growth in photobioreactors under high light conditions showed an enhanced biomass production of strains with respect to -. When compared to WT strain, biomass yield of the + genotype was enhanced by 68%.
Domestication of microalgae like by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor.
微藻是富含脂质生物质的高效生产者,使其成为开发可持续能源以及替代化石燃料的关键组成部分。由于其在光生物反应器中的快速生长速度,某些物种特别受关注。然而,生物限制因素仍然使生物燃料的高成本与廉价石油之间存在巨大差距,从而阻碍了生产碳中和生物燃料的前景。一个关键问题是光在培养物中的分布不均导致光利用效率低下,这会对表面暴露的细胞产生光抑制作用,并使内层变暗。因此,高效的生物燃料生产需要驯化,包括降低培养物光密度和增强光保护的特性。
我们对微藻应用了两步诱变和表型选择。首先,选择了一个浅绿色突变体(-),与野生型相比,其每个细胞的叶绿素含量和每个光系统II的捕光复合体II含量均降低了50%。-与野生型相比,将光子转化为生物质的效率提高了30%。对-进行第二步诱变,然后选择对孟加拉玫瑰红具有更高耐受性,从而分离出了对单线态氧具有更高抗性的浅绿色基因型(菌株)。在高光条件下的光生物反应器中生长表明,与-相比,菌株的生物质产量有所提高。与野生型菌株相比,+基因型的生物质产量提高了68%。
通过优化光分布和活性氧抗性对微藻(如)进行驯化,可提高光生物反应器中的碳同化率。