Levitan Nathaniel, Kang Yanghui, Özdoğan Mutlu, Magliulo Vincenzo, Castillo Paulo, Moshary Fred, Gross Barry
Department of Electrical Engineering, City College of New York, 160 Convent Ave., New York, NY 10031, USA.
Department of Geography, University of Wisconsin-Madison, 550 N. Park St., Madison, WI 53706, USA.
Remote Sens (Basel). 2019 Aug 2;11(16):1928. doi: 10.3390/rs11161928.
Coupling crop growth models and remote sensing provides the potential to improve our understanding of the genotype x environment x management (G × E × M) variability of crop growth on a global scale. Unfortunately, the uncertainty in the relationship between the satellite measurements and the crop state variables across different sites and growth stages makes it difficult to perform the coupling. In this study, we evaluate the effects of this uncertainty with MODIS data at the Mead, Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and accurate, collocated Hybrid-Maize (HM) simulations of leaf area index (LAI) and canopy light use efficiency (LUE). The simulations are used to both explore the sensitivity of the satellite-estimated genotype × management (G × M) parameters to the satellite retrieval regression coefficients and to quantify the amount of uncertainty attributable to site and growth stage specific factors. Additional ground-truth datasets of LAI and LUE are used to validate the analysis. The results show that uncertainty in the LAI/satellite measurement regression coefficients lead to large uncertainty in the G × M parameters retrievable from satellites. In addition to traditional leave-one-site-out regression analysis, the regression coefficient uncertainty is assessed by evaluating the retrieval performance of the temporal change in LAI and LUE. The weekly change in LAI is shown to be retrievable with a correlation coefficient absolute value (|r|) of 0.70 and root-mean square error (RMSE) value of 0.4, which is significantly better than the performance expected if the uncertainty was caused by random error rather than secondary effects caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of 1.46 assuming random error). As a result, this study highlights the importance of accounting for site and growth stage specific factors in remote sensing retrievals for future work developing methods coupling remote sensing with crop growth models.
将作物生长模型与遥感相结合,为在全球范围内增进我们对作物生长的基因型×环境×管理(G×E×M)变异性的理解提供了潜力。不幸的是,不同地点和生长阶段的卫星测量值与作物状态变量之间关系的不确定性使得进行这种耦合变得困难。在本研究中,我们利用内布拉斯加州米德市Ameriflux站点(美国 - Ne1、美国 - Ne2和美国 - Ne3)的MODIS数据以及叶面积指数(LAI)和冠层光能利用效率(LUE)的精确、同位配置的杂交玉米(HM)模拟,评估了这种不确定性的影响。这些模拟用于探索卫星估算的基因型×管理(G×M)参数对卫星反演回归系数的敏感性,并量化归因于特定地点和生长阶段因素的不确定性量。额外的LAI和LUE地面真值数据集用于验证分析。结果表明,LAI/卫星测量回归系数的不确定性导致从卫星可检索到的G×M参数存在很大不确定性。除了传统的留一法回归分析外,还通过评估LAI和LUE时间变化的反演性能来评估回归系数的不确定性。结果表明,LAI的每周变化可以以绝对值相关系数(|r|)为0.70和均方根误差(RMSE)值为0.4进行反演,这明显优于如果不确定性是由随机误差而非特定地点和生长阶段因素引起的二次效应所预期的性能(假设随机误差时预期的|r|值为0.36,RMSE值为1.46)。因此,本研究强调了在未来将遥感与作物生长模型相结合的方法开发中,在遥感反演中考虑特定地点和生长阶段因素的重要性。