Suppr超能文献

有性生殖与交配型基因座的进化:与人类病原真菌发病机制的关联。

The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Human Pathogenic Fungi.

机构信息

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; email:

出版信息

Annu Rev Genet. 2019 Dec 3;53:417-444. doi: 10.1146/annurev-genet-120116-024755. Epub 2019 Sep 19.

Abstract

species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type () loci and influence pathogenesis, population dynamics, and lineage divergence in . has undergone significant evolutionary changes within the genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and in this genus, species provide key insights into the evolution of sexual reproduction.

摘要

物种利用多种有性生殖机制,这些机制产生遗传多样性,清除有害突变,并有助于它们占据无数的环境小生境,并表现出一系列的致病潜力。 致病物种的两性和单性周期受到与其环境小生境相关的特性的刺激,并通过特征明确的信号通路和相应的形态变化进行。 控制交配的基因由交配型()基因座编码,并影响 中的致病性、种群动态和谱系分化。 在属内经历了显著的进化变化,包括从非致病性物种的祖先四极状态向致病性物种的双极交配系统的转变,以及几次内部重新配置。 由于已建立的有性生殖机制的多样性,以及在这个属中对交配和 进化的强有力的描述, 物种为有性生殖的进化提供了关键的见解。

相似文献

1
The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Human Pathogenic Fungi.
Annu Rev Genet. 2019 Dec 3;53:417-444. doi: 10.1146/annurev-genet-120116-024755. Epub 2019 Sep 19.
5
Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination.
PLoS Biol. 2017 Aug 11;15(8):e2002527. doi: 10.1371/journal.pbio.2002527. eCollection 2017 Aug.
6
Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans.
Eukaryot Cell. 2008 Oct;7(10):1847-55. doi: 10.1128/EC.00271-08. Epub 2008 Aug 22.
8
The Pheromone and Pheromone Receptor Mating-Type Locus Is Involved in Controlling Uniparental Mitochondrial Inheritance in .
Genetics. 2020 Mar;214(3):703-717. doi: 10.1534/genetics.119.302824. Epub 2019 Dec 30.
9
Convergent evolution of linked mating-type loci in basidiomycete fungi.
PLoS Genet. 2019 Sep 6;15(9):e1008365. doi: 10.1371/journal.pgen.1008365. eCollection 2019 Sep.

引用本文的文献

1
Pathogenicity and virulence of Cryptococcus neoformans from an environmental perspective.
Virulence. 2025 Dec;16(1):2547090. doi: 10.1080/21505594.2025.2547090. Epub 2025 Aug 14.
2
STRIPAK complex defects result in pseudosexual reproduction in Cryptococcus neoformans.
PLoS Genet. 2025 Jun 30;21(6):e1011774. doi: 10.1371/journal.pgen.1011774. eCollection 2025 Jun.
3
Fungal sexual reproduction and mating-type loci.
Curr Biol. 2025 Jun 9;35(11):R496-R503. doi: 10.1016/j.cub.2025.04.061.
4
STRIPAK complex defects result in pseudosexual reproduction in .
bioRxiv. 2025 Apr 18:2025.04.08.647827. doi: 10.1101/2025.04.08.647827.
5
Essential genes encoded by the mating-type locus of the human fungal pathogen .
mBio. 2025 Apr 9;16(4):e0022325. doi: 10.1128/mbio.00223-25. Epub 2025 Feb 25.
6
Homeodomain protein Sxi1α regulates cell-cell fusion during distinct sexual reproduction modes in .
bioRxiv. 2025 Feb 14:2025.02.11.637763. doi: 10.1101/2025.02.11.637763.
7
Tracing the evolution and genomic dynamics of mating-type loci in pathogens and closely related species.
bioRxiv. 2025 Feb 16:2025.02.12.637874. doi: 10.1101/2025.02.12.637874.
8
Essential genes encoded by the mating-type locus of the human fungal pathogen .
bioRxiv. 2024 Dec 5:2024.12.02.626420. doi: 10.1101/2024.12.02.626420.
9
Distinct evolutionary trajectories following loss of RNA interference in .
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2416656121. doi: 10.1073/pnas.2416656121. Epub 2024 Nov 13.
10
Distinct evolutionary trajectories following loss of RNA interference in .
bioRxiv. 2024 Oct 1:2024.08.15.608186. doi: 10.1101/2024.08.15.608186.

本文引用的文献

1
Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Pathogens.
mBio. 2019 Jun 11;10(3):e00764-19. doi: 10.1128/mBio.00764-19.
2
Quantitation of Purines from Pigeon Guano and Implications for Cryptococcus neoformans Survival During Infection.
Mycopathologia. 2019 Apr;184(2):273-281. doi: 10.1007/s11046-018-0315-0. Epub 2019 Feb 1.
5
Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide.
Nat Microbiol. 2018 Jun;3(6):698-707. doi: 10.1038/s41564-018-0160-4. Epub 2018 May 21.
6
Multiple convergent supergene evolution events in mating-type chromosomes.
Nat Commun. 2018 May 21;9(1):2000. doi: 10.1038/s41467-018-04380-9.
8
Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals.
PLoS Pathog. 2018 May 18;14(5):e1007007. doi: 10.1371/journal.ppat.1007007. eCollection 2018 May.
9
The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis.
PLoS Pathog. 2018 May 18;14(5):e1006978. doi: 10.1371/journal.ppat.1006978. eCollection 2018 May.
10
A High-Resolution Map of Meiotic Recombination in Demonstrates Decreased Recombination in Unisexual Reproduction.
Genetics. 2018 Jun;209(2):567-578. doi: 10.1534/genetics.118.300996. Epub 2018 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验