Suppr超能文献

胚胎腱延伸过程中凝溶胶蛋白在间充质祖细胞募集中的作用。

Requirement for scleraxis in the recruitment of mesenchymal progenitors during embryonic tendon elongation.

机构信息

Research Division, Shriners Hospital for Children, Portland, OR 97239, USA

Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Development. 2019 Oct 4;146(20):dev182782. doi: 10.1242/dev.182782.

Abstract

The transcription factor scleraxis () is required for tendon development; however, the function of is not fully understood. Although is expressed by all tendon progenitors and cells, only long tendons are disrupted in the mutant; short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We recently demonstrated that long tendons are formed in two stages: first, by muscle anchoring to skeleton via a short tendon anlage; and second, by rapid elongation of the tendon in parallel with skeletal growth. Through lineage tracing, we extend these observations to all long tendons and show that tendon elongation is fueled by recruitment of new mesenchymal progenitors. Conditional loss of in mesenchymal progenitors did not affect the first stage of anchoring; however, new cells were not recruited during elongation and long tendon formation was impaired. Interestingly, for tenocyte recruitment, expression was required only in the recruited cells and not in the recruiting tendon. The phenotype of mutants can thus be understood as a failure of tendon cell recruitment during tendon elongation.

摘要

转录因子 Scleraxis () 对于肌腱发育是必需的;然而, 的功能尚未完全了解。尽管 在所有肌腱祖细胞和细胞中都有表达,但 在 突变体中仅长肌腱受到破坏;短肌腱看起来正常,肌肉附着在骨骼上的能力不受影响。我们最近证明,长肌腱分两个阶段形成:首先,通过肌肉通过短肌腱原基附着在骨骼上;其次,随着骨骼生长,肌腱迅速伸长。通过谱系追踪,我们将这些观察结果扩展到所有长肌腱,并表明肌腱伸长是由新的间充质祖细胞募集提供动力的。条件性敲除 在间充质祖细胞中不影响锚定的第一阶段;然而,在伸长过程中没有招募新的细胞,长肌腱形成受损。有趣的是,对于成纤维细胞募集, 表达仅在募集的细胞中而不在募集的肌腱中需要。因此, 突变体的表型可以理解为肌腱伸长过程中肌腱细胞募集失败。

相似文献

2
Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.
Development. 2013 Jul;140(13):2680-90. doi: 10.1242/dev.093906. Epub 2013 May 29.
3
Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.
Development. 2007 Jul;134(14):2697-708. doi: 10.1242/dev.001933. Epub 2007 Jun 13.
4
Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament.
Development. 2013 Jun;140(11):2280-8. doi: 10.1242/dev.096354. Epub 2013 Apr 24.
5
Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice.
J Biol Chem. 2018 Apr 20;293(16):5766-5780. doi: 10.1074/jbc.RA118.001987. Epub 2018 Mar 5.
6
Scleraxis is required for differentiation of the stapedius and tensor tympani tendons of the middle ear.
J Assoc Res Otolaryngol. 2011 Aug;12(4):407-21. doi: 10.1007/s10162-011-0264-5. Epub 2011 Mar 12.
7
FGF signaling patterns cell fate at the interface between tendon and bone.
Development. 2019 Aug 2;146(15):dev170241. doi: 10.1242/dev.170241.
9
Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis.
Stem Cells Dev. 2012 Apr 10;21(6):846-58. doi: 10.1089/scd.2011.0150. Epub 2011 Oct 11.
10
Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice.
PLoS One. 2020 Dec 1;15(12):e0242286. doi: 10.1371/journal.pone.0242286. eCollection 2020.

引用本文的文献

1
Transcription factor Mohawk regulates tendon/ligament development: A narrative review.
Medicine (Baltimore). 2025 Jul 25;104(30):e43044. doi: 10.1097/MD.0000000000043044.
3
Engineered Decellularized Tendon Matrix Putty Preserves Native Tendon Bioactivity to Promote Cell Proliferation and Enthesis Repair.
J Tissue Eng Regen Med. 2023 Nov 16;2023:4665795. doi: 10.1155/2023/4665795. eCollection 2023.
4
Achieving tendon enthesis regeneration across length scales.
Curr Opin Biomed Eng. 2024 Sep;31. doi: 10.1016/j.cobme.2024.100547. Epub 2024 May 22.
5
Interfacial Tissue Regeneration with Bone.
Curr Osteoporos Rep. 2024 Apr;22(2):290-298. doi: 10.1007/s11914-024-00859-1. Epub 2024 Feb 15.
6
7
Wnt/β-Catenin Signaling Inhibits Osteogenic Differentiation in Human Periodontal Ligament Fibroblasts.
Biomimetics (Basel). 2022 Dec 3;7(4):224. doi: 10.3390/biomimetics7040224.
8
Tenogenic Induction From Induced Pluripotent Stem Cells Unveils the Trajectory Towards Tenocyte Differentiation.
Front Cell Dev Biol. 2022 Mar 9;10:780038. doi: 10.3389/fcell.2022.780038. eCollection 2022.
9
Comparison of Tendon Development Versus Tendon Healing and Regeneration.
Front Cell Dev Biol. 2022 Jan 24;10:821667. doi: 10.3389/fcell.2022.821667. eCollection 2022.
10
Evolution of Somite Compartmentalization: A View From .
Front Cell Dev Biol. 2022 Jan 17;9:790847. doi: 10.3389/fcell.2021.790847. eCollection 2021.

本文引用的文献

2
Mechanobiology of limb musculoskeletal development.
Ann N Y Acad Sci. 2017 Dec;1409(1):18-32. doi: 10.1111/nyas.13427. Epub 2017 Aug 22.
3
Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton.
Dev Biol. 2017 Sep 15;429(2):420-428. doi: 10.1016/j.ydbio.2017.03.028. Epub 2017 Mar 28.
5
Joint Development Involves a Continuous Influx of Gdf5-Positive Cells.
Cell Rep. 2016 Jun 21;15(12):2577-87. doi: 10.1016/j.celrep.2016.05.055. Epub 2016 Jun 9.
6
Musculoskeletal integration at the wrist underlies the modular development of limb tendons.
Development. 2015 Jul 15;142(14):2431-41. doi: 10.1242/dev.122374. Epub 2015 Jun 10.
7
The development of zebrafish tendon and ligament progenitors.
Development. 2014 May;141(10):2035-45. doi: 10.1242/dev.104067.
9
Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.
Development. 2013 Jul;140(13):2680-90. doi: 10.1242/dev.093906. Epub 2013 May 29.
10
Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament.
Development. 2013 Jun;140(11):2280-8. doi: 10.1242/dev.096354. Epub 2013 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验