Suppr超能文献

致病 Tau 损害轴突起始段可塑性和兴奋性稳态。

Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis.

机构信息

Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Neuron. 2019 Nov 6;104(3):458-470.e5. doi: 10.1016/j.neuron.2019.08.008. Epub 2019 Sep 18.

Abstract

Dysregulation of neuronal excitability underlies the pathogenesis of tauopathies, including frontotemporal dementia (FTD) with tau inclusions. A majority of FTD-causing tau mutations are located in the microtubule-binding domain, but how these mutations alter neuronal excitability is largely unknown. Here, using CRISPR/Cas9-based gene editing in human pluripotent stem cell (iPSC)-derived neurons and isogenic controls, we show that the FTD-causing V337M tau mutation impairs activity-dependent plasticity of the cytoskeleton in the axon initial segment (AIS). Extracellular recordings by multi-electrode arrays (MEAs) revealed that the V337M tau mutation in human neurons leads to an abnormal increase in neuronal activity in response to chronic depolarization. Stochastic optical reconstruction microscopy of human neurons with this mutation showed that AIS plasticity is impaired by the abnormal accumulation of end-binding protein 3 (EB3) in the AIS submembrane region. These findings expand our understanding of how FTD-causing tau mutations dysregulate components of the neuronal cytoskeleton, leading to network dysfunction.

摘要

神经元兴奋性失调是包括伴有 tau 包涵体的额颞叶痴呆(FTD)在内的 tau 病发病机制的基础。大多数导致 FTD 的 tau 突变位于微管结合域,但这些突变如何改变神经元兴奋性在很大程度上尚不清楚。在这里,我们使用基于 CRISPR/Cas9 的基因编辑在人多能干细胞(iPSC)衍生的神经元和同基因对照中,显示 FTD 致病 V337M tau 突变损害了轴突起始段(AIS)中细胞骨架的活性依赖性可塑性。通过多电极阵列(MEA)进行的细胞外记录显示,人神经元中的 V337M tau 突变导致对慢性去极化的神经元活性异常增加。具有这种突变的人神经元的随机光学重建显微镜显示,AIS 可塑性受损是由于 AIS 亚膜区异常积累末端结合蛋白 3(EB3)所致。这些发现扩展了我们对导致 FTD 的 tau 突变如何使神经元细胞骨架的成分失调,导致网络功能障碍的理解。

相似文献

1
Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis.
Neuron. 2019 Nov 6;104(3):458-470.e5. doi: 10.1016/j.neuron.2019.08.008. Epub 2019 Sep 18.
2
Solving the Mysteries of Dementia: FTD Mutant Tau Impairs Structural Axon Initial Segment Plasticity.
Neuron. 2019 Nov 6;104(3):429-430. doi: 10.1016/j.neuron.2019.10.021.
3
Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment.
Acta Neuropathol. 2017 May;133(5):717-730. doi: 10.1007/s00401-017-1674-1. Epub 2017 Jan 16.
4
Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability.
Stem Cell Reports. 2016 Sep 13;7(3):325-340. doi: 10.1016/j.stemcr.2016.08.001. Epub 2016 Sep 1.
6
MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations.
Stem Cell Reports. 2016 Sep 13;7(3):316-324. doi: 10.1016/j.stemcr.2016.08.006. Epub 2016 Sep 1.
7
Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.
J Biol Chem. 2017 Jul 21;292(29):12192-12207. doi: 10.1074/jbc.M117.784702. Epub 2017 May 23.
9
Frontotemporal dementia with the V337M mutation: Tau-PET and pathology correlations.
Neurology. 2017 Feb 21;88(8):758-766. doi: 10.1212/WNL.0000000000003636. Epub 2017 Jan 27.
10
Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells.
Mol Cell Neurosci. 2020 Dec;109:103553. doi: 10.1016/j.mcn.2020.103553. Epub 2020 Sep 19.

引用本文的文献

1
SON-dependent nuclear speckle rehabilitation alleviates proteinopathies.
Nat Commun. 2025 Aug 5;16(1):7065. doi: 10.1038/s41467-025-62242-7.
5
GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau.
Nat Commun. 2025 Apr 9;16(1):3312. doi: 10.1038/s41467-025-58585-w.
7
KCTD20 suppression mitigates excitotoxicity in tauopathy patient organoids.
Neuron. 2025 Apr 16;113(8):1169-1189.e7. doi: 10.1016/j.neuron.2025.02.001. Epub 2025 Mar 5.
9
A novel lncRNA FAM151B-DT regulates autophagy and degradation of aggregation prone proteins.
medRxiv. 2025 Jan 24:2025.01.22.25320997. doi: 10.1101/2025.01.22.25320997.
10
Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202409104. Epub 2024 Dec 24.

本文引用的文献

1
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
Nat Struct Mol Biol. 2018 May;25(5):384-393. doi: 10.1038/s41594-018-0057-1. Epub 2018 Apr 30.
2
Action potential propagation recorded from single axonal arbors using multielectrode arrays.
J Neurophysiol. 2018 Jul 1;120(1):306-320. doi: 10.1152/jn.00659.2017. Epub 2018 Apr 11.
3
MEA Viewer: A high-performance interactive application for visualizing electrophysiological data.
PLoS One. 2018 Feb 9;13(2):e0192477. doi: 10.1371/journal.pone.0192477. eCollection 2018.
4
Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton.
Cell Rep. 2018 Jan 30;22(5):1151-1158. doi: 10.1016/j.celrep.2017.12.107.
5
Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by High-Content Screening.
Stem Cell Reports. 2017 Oct 10;9(4):1221-1233. doi: 10.1016/j.stemcr.2017.08.019. Epub 2017 Sep 28.
7
Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.
J Biol Chem. 2017 Jul 21;292(29):12192-12207. doi: 10.1074/jbc.M117.784702. Epub 2017 May 23.
8
Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment.
Acta Neuropathol. 2017 May;133(5):717-730. doi: 10.1007/s00401-017-1674-1. Epub 2017 Jan 16.
9
Structural and Functional Plasticity at the Axon Initial Segment.
Front Cell Neurosci. 2016 Oct 25;10:250. doi: 10.3389/fncel.2016.00250. eCollection 2016.
10
Stabilizing the Hsp70-Tau Complex Promotes Turnover in Models of Tauopathy.
Cell Chem Biol. 2016 Aug 18;23(8):992-1001. doi: 10.1016/j.chembiol.2016.04.014. Epub 2016 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验