Suppr超能文献

能够实现自适应和噪声衰减双重功能的网络拓扑结构。

Network Topologies That Can Achieve Dual Function of Adaptation and Noise Attenuation.

机构信息

Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.

Center for Quantitative Biology, Peking University, Beijing 100871, China.

出版信息

Cell Syst. 2019 Sep 25;9(3):271-285.e7. doi: 10.1016/j.cels.2019.08.006. Epub 2019 Sep 18.

Abstract

Many signaling systems execute adaptation under circumstances that require noise attenuation. Here, we identify an intrinsic trade-off existing between sensitivity and noise attenuation in the three-node networks. We demonstrate that although fine-tuning timescales in three-node adaptive networks can partially mediate this trade-off in this context, it prolongs adaptation time and imposes unrealistic parameter constraints. By contrast, four-node networks can effectively decouple adaptation and noise attenuation to achieve dual function without a trade-off, provided that these functions are executed sequentially. We illustrate ideas in seven biological examples, including Dictyostelium discoideum chemotaxis and the p53 signaling network and find that adaptive networks are often associated with a noise attenuation module. Our approach may be applicable to finding network design principles for other dual and multiple functions.

摘要

许多信号系统在需要衰减噪声的情况下执行自适应。在这里,我们在三节点网络中识别出存在于灵敏度和噪声衰减之间的固有权衡。我们证明,尽管三节点自适应网络中的微调时间尺度可以在这种情况下部分缓解这种权衡,但它会延长适应时间并施加不切实际的参数约束。相比之下,四节点网络可以有效地分离适应和噪声衰减,以在不产生权衡的情况下实现双重功能,前提是这些功能按顺序执行。我们在七个生物学示例中说明了这些想法,包括盘基网柄菌的趋化性和 p53 信号网络,并发现自适应网络通常与噪声衰减模块相关。我们的方法可能适用于寻找其他双重和多重功能的网络设计原则。

相似文献

1
Network Topologies That Can Achieve Dual Function of Adaptation and Noise Attenuation.
Cell Syst. 2019 Sep 25;9(3):271-285.e7. doi: 10.1016/j.cels.2019.08.006. Epub 2019 Sep 18.
2
Defining network topologies that can achieve biochemical adaptation.
Cell. 2009 Aug 21;138(4):760-73. doi: 10.1016/j.cell.2009.06.013.
4
Bi-functional biochemical networks.
Phys Biol. 2018 Oct 30;16(1):016001. doi: 10.1088/1478-3975/aae74c.
5
Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.
IEEE/ACM Trans Comput Biol Bioinform. 2016 May-Jun;13(3):571-7. doi: 10.1109/TCBB.2015.2430321.
6
Inferring biomolecular interaction networks based on convex optimization.
Comput Biol Chem. 2007 Oct;31(5-6):347-54. doi: 10.1016/j.compbiolchem.2007.08.003. Epub 2007 Aug 17.
7
Finding gene network topologies for given biological function with recurrent neural network.
Nat Commun. 2021 May 25;12(1):3125. doi: 10.1038/s41467-021-23420-5.
8
GPCR-controlled chemotaxis in Dictyostelium discoideum.
Wiley Interdiscip Rev Syst Biol Med. 2011 Nov-Dec;3(6):717-27. doi: 10.1002/wsbm.143. Epub 2011 Mar 4.
9
A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum.
Philos Trans R Soc Lond B Biol Sci. 1997 Mar 29;352(1351):391-417. doi: 10.1098/rstb.1997.0029.
10
Navigating signaling networks: chemotaxis in Dictyostelium discoideum.
Curr Opin Genet Dev. 2006 Aug;16(4):333-8. doi: 10.1016/j.gde.2006.06.001. Epub 2006 Jun 19.

引用本文的文献

1
Bifurcation enhances temporal information encoding in the olfactory periphery.
PRX Life. 2024 Nov;2(4). doi: 10.1103/prxlife.2.043011. Epub 2024 Nov 12.
2
Topological criterion for robust perfect adaptation of reaction fluxes in biological networks.
iScience. 2025 Apr 11;28(6):112394. doi: 10.1016/j.isci.2025.112394. eCollection 2025 Jun 20.
3
Dynamical mechanisms of growth-feedback effects on adaptive gene circuits.
Elife. 2025 Jun 5;12:RP89170. doi: 10.7554/eLife.89170.
5
Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop.
PLoS Comput Biol. 2024 Oct 31;20(10):e1012564. doi: 10.1371/journal.pcbi.1012564. eCollection 2024 Oct.
6
Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway.
NPJ Syst Biol Appl. 2024 Sep 14;10(1):103. doi: 10.1038/s41540-024-00430-9.
8
Design Principles for Biological Adaptation: A Systems and Control-Theoretic Treatment.
Methods Mol Biol. 2024;2760:35-56. doi: 10.1007/978-1-0716-3658-9_3.
9
Bayesian Optimization for Design of Multiscale Biological Circuits.
ACS Synth Biol. 2023 Jul 21;12(7):2073-2082. doi: 10.1021/acssynbio.3c00120. Epub 2023 Jun 20.
10
Design principles of improving the dose-response alignment in coupled GTPase switches.
NPJ Syst Biol Appl. 2023 Jan 31;9(1):3. doi: 10.1038/s41540-023-00266-9.

本文引用的文献

1
p53: Multiple Facets of a Rubik's Cube.
Annu Rev Cancer Biol. 2017 Mar;1:185-201. doi: 10.1146/annurev-cancerbio-050216-121926. Epub 2016 Oct 17.
2
Bi-functional biochemical networks.
Phys Biol. 2018 Oct 30;16(1):016001. doi: 10.1088/1478-3975/aae74c.
3
A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization.
Cell. 2018 Jun 14;173(7):1609-1621.e15. doi: 10.1016/j.cell.2018.04.005. Epub 2018 May 10.
5
Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit.
Cell Syst. 2017 Nov 22;5(5):460-470.e5. doi: 10.1016/j.cels.2017.09.016. Epub 2017 Oct 25.
6
Adaptation with transcriptional regulation.
Sci Rep. 2017 Feb 24;7:42648. doi: 10.1038/srep42648.
7
Optimal Regulatory Circuit Topologies for Fold-Change Detection.
Cell Syst. 2017 Feb 22;4(2):171-181.e8. doi: 10.1016/j.cels.2016.12.009. Epub 2017 Jan 11.
8
Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.
Cell Syst. 2016 Jan 27;2(1):15-26. doi: 10.1016/j.cels.2016.01.004.
9
Perfect and Near-Perfect Adaptation in Cell Signaling.
Cell Syst. 2016 Feb 24;2(2):62-7. doi: 10.1016/j.cels.2016.02.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验