Institutes of Population Health Sciences, National Health Research, Zhunan, Taiwan.
Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan.
J Comput Biol. 2020 Jun;27(6):934-940. doi: 10.1089/cmb.2019.0232. Epub 2019 Sep 23.
Protein-based virtual screening is integral to the modern drug discovery process. Most protein-based virtual screening experiments are performed using docking programs. The accuracy of a docking program strongly relies on the incorporated scoring function used, which is based on various energy terms. The existing scoring functions deal with the energy terms that use the equal weight function or other weight functions, which do not depend on characteristics of the protein. To improve the existing methods, Lu and Wang proposed a protein-specific scoring function based on a regression analysis that was shown to have higher performance than the existing methods. In this study, we propose a protein-specific scoring approach to select potential ligands based on logistic regression analysis. The performance of our method was evaluated using the Directory of Useful Decoys docked data set, which contains 40 protein targets. The results showed that the proposed method can increase the enrichment factors for most of the 40 protein targets.
基于蛋白质的虚拟筛选是现代药物发现过程的重要组成部分。大多数基于蛋白质的虚拟筛选实验都是使用对接程序进行的。对接程序的准确性很大程度上取决于所使用的包含评分函数,该函数基于各种能量项。现有的评分函数处理使用等权重函数或其他不依赖于蛋白质特性的权重函数的能量项。为了改进现有的方法,Lu 和 Wang 提出了一种基于回归分析的蛋白质特异性评分函数,该方法被证明比现有的方法具有更高的性能。在这项研究中,我们提出了一种基于逻辑回归分析的蛋白质特异性评分方法,用于选择潜在的配体。我们使用包含 40 个蛋白质靶标的目录有用诱饵对接数据集来评估我们方法的性能。结果表明,该方法可以提高大多数 40 个蛋白质靶的富集因子。