Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute (MI), Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
Sci Adv. 2019 Sep 13;5(9):eaax4762. doi: 10.1126/sciadv.aax4762. eCollection 2019 Sep.
Reproducible batch synthesis of radioligands for imaging by positron emission tomography (PET) in a manner that maximizes ligand yield, purity, and molar activity, and minimizes cost and exposure to radiation, remains a challenge, as new and synthetically complex radioligands become available. Commercially available automated synthesis units (ASUs) solve many of these challenges but are costly to install and cannot always accommodate diverse chemistries. Through a reiterative design process, we exploit the proliferation of three-dimensional (3D) printing technologies to translate optimized reaction conditions into ASUs composed of 3D-printed, electronic, and robotic parts. Our units are portable and robust and reduce radiation exposure, shorten synthesis time, and improve the yield of the final radiopharmaceutical for a fraction of the cost of a commercial ASU. These 3D-printed ASUs highlight the gains that can be made by designing a fit-for-purpose ASU to accommodate a synthesis over accommodating a synthesis to an unfit ASU.
以最大限度地提高配体产率、纯度和摩尔活性,同时最大限度地降低成本和辐射暴露为目标,重复性地批量合成用于正电子发射断层扫描(PET)成像的放射性配体仍然是一个挑战,因为新的和合成复杂的放射性配体不断出现。商业上可用的自动化合成单元(ASU)解决了许多这些挑战,但安装成本高,并且不能总是适应各种化学。通过反复的设计过程,我们利用三维(3D)打印技术的普及,将优化的反应条件转化为由 3D 打印、电子和机器人部件组成的 ASU。我们的单元便携且坚固,可减少辐射暴露,缩短合成时间,并提高最终放射性药物的产率,成本仅为商业 ASU 的一小部分。这些 3D 打印的 ASU 突出了通过设计适合特定用途的 ASU 来适应合成,而不是适应不适合的 ASU 来适应合成,可以获得的收益。