Vincent Delphine, Binos Steve, Rochfort Simone, Spangenberg German
Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
Thermo Fisher Scientific, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia.
Proteomes. 2019 Sep 24;7(4):33. doi: 10.3390/proteomes7040033.
The revised legislation on medicinal cannabis has triggered a surge of research studies in this space. Yet, cannabis proteomics is lagging. In a previous study, we optimised the protein extraction of mature buds for bottom-up proteomics. In this follow-up study, we developed a top-down mass spectrometry (MS) proteomics strategy to identify intact denatured protein from cannabis apical buds. After testing different source-induced dissociation (SID), collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) parameters on infused known protein standards, we devised three LC-MS/MS methods for top-down sequencing of cannabis proteins. Different MS/MS modes produced distinct spectra, albeit greatly overlapping between SID, CID, and HCD. The number of fragments increased with the energy applied; however, this did not necessarily translate into greater sequence coverage. Some precursors were more amenable to fragmentation than others. Sequence coverage decreased as the mass of the protein increased. Combining all MS/MS data maximised amino acid (AA) sequence coverage, achieving 73% for myoglobin. In this experiment, most cannabis proteins were smaller than 30 kD. A total of 46 cannabis proteins were identified with 136 proteoforms bearing different post-translational modifications (PTMs), including the excision of N-terminal M, the N-terminal acetylation, methylation, and acetylation of K resides, and phosphorylation. Most identified proteins are involved in photosynthesis, translation, and ATP production. Only one protein belongs to the phytocannabinoid biosynthesis, olivetolic acid cyclase.
修订后的药用大麻立法引发了该领域大量的研究。然而,大麻蛋白质组学却滞后了。在之前的一项研究中,我们优化了用于自下而上蛋白质组学的成熟芽蛋白质提取方法。在这项后续研究中,我们开发了一种自上而下的质谱(MS)蛋白质组学策略,以从大麻顶芽中鉴定完整的变性蛋白质。在对注入的已知蛋白质标准品测试了不同的源诱导解离(SID)、碰撞诱导解离(CID)、高能碰撞解离(HCD)和电子转移解离(ETD)参数后,我们设计了三种用于大麻蛋白质自上而下测序的液相色谱 - 串联质谱(LC-MS/MS)方法。不同的串联质谱模式产生了不同的光谱,尽管SID、CID和HCD之间有很大的重叠。碎片数量随着施加的能量增加而增加;然而,这并不一定转化为更高的序列覆盖率。一些前体比其他前体更易于碎片化。随着蛋白质质量的增加,序列覆盖率下降。结合所有串联质谱数据可使氨基酸(AA)序列覆盖率最大化,肌红蛋白达到了73%。在这个实验中,大多数大麻蛋白质小于30 kD。总共鉴定出46种大麻蛋白质,有136种蛋白质异构体带有不同的翻译后修饰(PTM),包括N端M的切除、N端乙酰化、K残基的甲基化和乙酰化以及磷酸化。大多数鉴定出的蛋白质参与光合作用、翻译和ATP生成。只有一种蛋白质属于植物大麻素生物合成,即橄榄酸环化酶。