Suppr超能文献

中国 PM 健康风险的社会经济因素和区域差异。

Socioeconomic factors and regional differences of PM health risks in China.

机构信息

College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

出版信息

J Environ Manage. 2019 Dec 1;251:109564. doi: 10.1016/j.jenvman.2019.109564. Epub 2019 Sep 23.

Abstract

China is a country with one of the highest concentrations of airborne particulate matter smaller than 2.5 μm (PM) in the world, and it has obvious spatial-distribution characteristics. Areas of concentrated population tend to be regions with higher PM concentrations, which further aggravate the impact of PM pollution on population health. Using PM-concentration and socioeconomic data for 225 cities in China in 2015, we adopted a PM-health-risk-assessment method (with simplified calculation) and applied the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to analyze the effects of socioeconomic factors on PM health risks. The results showed that: (1) At the national level, the order of contribution degree of each socioeconomic factor in the PM-health-risk and PM-concentration model is consistent. (2) From a regional perspective, in all three regions, the industrial structure is the decisive factor affecting PM health risks, and reduction of energy intensity increases PM health risks, but the impact of the total amount of urban central heating on PM health risks is very low. In the eastern region, the increased urbanization rate and length of highways significantly increase PM2.5 health risks, but the increasing effect of the extent of built-up area is the lowest. In the central region, the increasing effects of the extent of built-up area on PM health risks are significantly greater than the decreasing effects of the urbanization rate. In the western region, economic development has the least effect on reducing PM health risks. Our research enriches PM-health-risk theory and provides some theoretical support for PM-health-risk diversity management in China.

摘要

中国是世界上空气中细颗粒物(PM)浓度最高的国家之一,且具有明显的空间分布特征。人口密集地区往往是 PM 浓度较高的区域,这进一步加剧了 PM 污染对人口健康的影响。本研究利用 2015 年中国 225 个城市的 PM 浓度和社会经济数据,采用 PM 健康风险评估方法(简化计算),应用 STIRPAT 模型分析了社会经济因素对 PM 健康风险的影响。结果表明:(1)在全国层面上,PM 健康风险和 PM 浓度模型中各社会经济因素的贡献度排序一致。(2)从区域角度看,在三大区域,产业结构均是影响 PM 健康风险的决定性因素,降低能源强度会增加 PM 健康风险,但城市集中供暖总量对 PM 健康风险的影响很小。在东部地区,城市化率和高速公路长度的增加显著增加了 PM2.5 健康风险,但建成区面积的增加影响最低。在中部地区,建成区面积对 PM 健康风险的增加效应明显大于城市化率的降低效应。在西部地区,经济发展对降低 PM 健康风险的作用最小。本研究丰富了 PM 健康风险理论,为中国 PM 健康风险差异化管理提供了一定的理论支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验