Suppr超能文献

基于 RNA-Seq 的基因表达的顺式和反式遗传力的特征描述。

A characterization of cis- and trans-heritability of RNA-Seq-based gene expression.

机构信息

Department of Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

Eur J Hum Genet. 2020 Feb;28(2):253-263. doi: 10.1038/s41431-019-0511-5. Epub 2019 Sep 26.

Abstract

Insights into individual differences in gene expression and its heritability (h) can help in understanding pathways from DNA to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from classical twin modeling and identity-by-state-based approaches. We estimated for each gene h, composed of cis-heritability (h, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-heritability (h, the residual variance explained by all other genome-wide variants). Mean h was 0.26, which was significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%) RNA samples (mean h = 0.14, p = 6.15 × 10). Mean h was 0.06 and strongly correlated with beta of the top cis expression quantitative loci (eQTL, ρ = 0.76, p < 10) and with estimates from earlier RNA-Seq-based studies. Mean h was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ = 0.04, p < 1.89 × 10) and was significantly higher for genes involved in cytokine-cytokine interactions (p = 4.22 × 10), many other immune system pathways, and genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study provides a thorough characterization of cis- and trans-h estimates of gene expression, which is of value for interpretation of GWAS and gene expression studies.

摘要

个体基因表达及其遗传力(h)的差异洞察有助于理解从 DNA 到表型的途径。我们通过经典的双胞胎模型和基于状态的同卵双胞胎和异卵双胞胎的全血 RNA-Seq 样本(包括 459 对同卵双胞胎和 150 对异卵双胞胎),对迄今为止最大的双胞胎 RNA-Seq 样本中的 52844 个基因的表达遗传力进行了估计。我们估计了每个基因的 h,由顺式遗传力(h,基因顺式窗内的单核苷酸多态性所解释的方差)和反式遗传力(h,所有其他全基因组变异所解释的剩余方差)组成。平均 h 为 0.26,显著高于早期在基于微阵列的研究中使用大量重叠(>60%)RNA 样本发现的遗传力估计值(平均 h = 0.14,p = 6.15 × 10)。平均 h 为 0.06,与最上位点 cis 表达数量性状基因座(eQTL)的 beta 值高度相关(ρ = 0.76,p < 10),与早期基于 RNA-Seq 的研究估计值相关。平均 h 为 0.20,与相应的 trans-eQTL 的 beta 值相关(ρ = 0.04,p < 1.89 × 10),并且与细胞因子-细胞因子相互作用(p = 4.22 × 10)、许多其他免疫系统途径以及全基因组关联研究中鉴定的基因的基因相关,包括行为障碍和癌症。这项研究提供了 cis 和 trans-h 估计的基因表达的全面特征,这对于解释全基因组关联研究和基因表达研究具有重要价值。

相似文献

1
A characterization of cis- and trans-heritability of RNA-Seq-based gene expression.
Eur J Hum Genet. 2020 Feb;28(2):253-263. doi: 10.1038/s41431-019-0511-5. Epub 2019 Sep 26.
3
Heritability and GWAS Studies for Monocyte-Lymphocyte Ratio.
Twin Res Hum Genet. 2017 Apr;20(2):97-107. doi: 10.1017/thg.2017.3. Epub 2017 Feb 14.
4
A systematic heritability analysis of the human whole blood transcriptome.
Hum Genet. 2015 Mar;134(3):343-58. doi: 10.1007/s00439-014-1524-3. Epub 2015 Jan 14.
5
Common DNA markers can account for more than half of the genetic influence on cognitive abilities.
Psychol Sci. 2013 Apr;24(4):562-8. doi: 10.1177/0956797612457952. Epub 2013 Mar 15.
6
Genome-wide eQTLs and heritability for gene expression traits in unrelated individuals.
BMC Genomics. 2014 Jan 9;15(1):13. doi: 10.1186/1471-2164-15-13.
7
Heritability and GWAS Analyses of Acne in Australian Adolescent Twins.
Twin Res Hum Genet. 2017 Dec;20(6):541-549. doi: 10.1017/thg.2017.58. Epub 2017 Nov 7.
9
The Brisbane Systems Genetics Study: genetical genomics meets complex trait genetics.
PLoS One. 2012;7(4):e35430. doi: 10.1371/journal.pone.0035430. Epub 2012 Apr 26.
10
Estimating heritability and shared environmental effects for refractive error in twin and family studies.
Invest Ophthalmol Vis Sci. 2009 Jan;50(1):126-31. doi: 10.1167/iovs.08-2385. Epub 2008 Aug 29.

引用本文的文献

1
Regulatory network topology and the genetic architecture of gene expression.
bioRxiv. 2025 Aug 12:2025.08.12.669924. doi: 10.1101/2025.08.12.669924.
2
Transcripts with high distal heritability mediate genetic effects on complex metabolic traits.
Nat Commun. 2025 Jul 1;16(1):5507. doi: 10.1038/s41467-025-61228-9.
3
Efficient count-based models improve power and robustness for large-scale single-cell eQTL mapping.
medRxiv. 2025 Mar 5:2025.01.18.25320755. doi: 10.1101/2025.01.18.25320755.
5
Heritability of Gene Expression Measured from Peripheral Blood in Older Adults.
Genes (Basel). 2024 Apr 16;15(4):495. doi: 10.3390/genes15040495.
6
Diallel panel reveals a significant impact of low-frequency genetic variants on gene expression variation in yeast.
Mol Syst Biol. 2024 Apr;20(4):362-373. doi: 10.1038/s44320-024-00021-0. Epub 2024 Feb 14.
7
Accounting for isoform expression increases power to identify genetic regulation of gene expression.
PLoS Comput Biol. 2024 Feb 12;20(2):e1011857. doi: 10.1371/journal.pcbi.1011857. eCollection 2024 Feb.
8
Transcriptome-wide association study of the plasma proteome reveals cis and trans regulatory mechanisms underlying complex traits.
Am J Hum Genet. 2024 Mar 7;111(3):445-455. doi: 10.1016/j.ajhg.2024.01.006. Epub 2024 Feb 5.
9
Non-additive genetic components contribute significantly to population-wide gene expression variation.
Cell Genom. 2024 Jan 10;4(1):100459. doi: 10.1016/j.xgen.2023.100459. Epub 2023 Dec 4.
10
Genetic analysis of the blood transcriptome of young healthy pigs to improve disease resilience.
Genet Sel Evol. 2023 Dec 12;55(1):90. doi: 10.1186/s12711-023-00860-9.

本文引用的文献

1
Age-dependent changes in mean and variance of gene expression across tissues in a twin cohort.
Hum Mol Genet. 2018 Feb 15;27(4):732-741. doi: 10.1093/hmg/ddx424.
2
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
3
Sex-Specific Gene Expression and Life Span Regulation.
Trends Endocrinol Metab. 2017 Oct;28(10):735-747. doi: 10.1016/j.tem.2017.07.002. Epub 2017 Aug 2.
4
Time-dependent genetic effects on gene expression implicate aging processes.
Genome Res. 2017 Apr;27(4):545-552. doi: 10.1101/gr.207688.116. Epub 2017 Mar 16.
5
The Genetic Architecture of Gene Expression in Peripheral Blood.
Am J Hum Genet. 2017 Feb 2;100(2):228-237. doi: 10.1016/j.ajhg.2016.12.008. Epub 2017 Jan 5.
6
Identification of context-dependent expression quantitative trait loci in whole blood.
Nat Genet. 2017 Jan;49(1):139-145. doi: 10.1038/ng.3737. Epub 2016 Dec 5.
7
The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).
Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901. doi: 10.1093/nar/gkw1133. Epub 2016 Nov 29.
8
KEGG: new perspectives on genomes, pathways, diseases and drugs.
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. doi: 10.1093/nar/gkw1092. Epub 2016 Nov 28.
9
Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues.
PLoS Genet. 2016 Nov 11;12(11):e1006423. doi: 10.1371/journal.pgen.1006423. eCollection 2016 Nov.
10
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验