Suppr超能文献

存在可逆黏附钉扎相互作用时松弛和紧张膜中的紧急膜形态。

Emergent membrane morphologies in relaxed and tense membranes in presence of reversible adhesive pinning interactions.

机构信息

Department of Chemical and Biomolecular engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America.

出版信息

Phys Biol. 2019 Oct 21;16(6):066011. doi: 10.1088/1478-3975/ab48d5.

Abstract

The morphologies of cell membranes, and specifically the local curvature distributions are determined either by its intrinsic components such as lipids and membrane-associated proteins or by the adhesion forces due to membrane interactions with the cytoskeleton, extracellular matrix (ECM) and other cells in the tissue, as well as physical variables such as membrane and frame tensions. We present a computational analysis for a model of pinned membranes based on the dynamically triangulated Monte Carlo (MC) model for membranes. We show that membrane adhesion to ECM or a substrate promotes curvature generation on cell membranes, and this process depends on the excess area, or equivalently membrane tension, and the density of adhesion sites. This biophysics based model predicts adhesion induced biogenesis of microvesicles in cell membranes. For a moderate density of adhesion sites and high excess membrane area, an increase in membrane tension can result in the formation of microvesicles and tubules on the membrane. We also demonstrate the significance of intrinsically curved proteins in promoting vesiculation on pinned membranes. The results presented here are relevant to the understanding of microvesicle biogenesis and curved membrane topographies due to physical factors such as substrate stiffness and ECM interactions.

摘要

细胞膜的形态,特别是局部曲率分布,由其内在成分(如脂质和膜相关蛋白)决定,或者由细胞膜与细胞骨架、细胞外基质(ECM)和组织中其他细胞之间的粘附力决定,以及膜和框架张力等物理变量。我们提出了一种基于动态三角化蒙特卡罗(MC)模型的固定膜模型的计算分析。我们表明,细胞膜与 ECM 或基质的粘附促进细胞膜上的曲率产生,这个过程取决于过剩面积(等效于膜张力)和粘附位点的密度。这个基于生物物理的模型预测了细胞膜中粘附诱导的微泡生物发生。对于中等密度的粘附位点和高过剩膜面积,膜张力的增加会导致膜上微泡和小管的形成。我们还证明了内在弯曲蛋白在促进固定膜上囊泡形成中的重要性。这里呈现的结果与理解由于物理因素(如基质刚度和 ECM 相互作用)引起的微泡生物发生和弯曲膜形貌有关。

相似文献

2
Internal forces, tension and energy density in tethered cellular membranes.
J Biomech. 2012 Apr 30;45(7):1328-31. doi: 10.1016/j.jbiomech.2012.01.041. Epub 2012 Feb 16.
3
A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength.
Biophys J. 1993 Mar;64(3):936-59. doi: 10.1016/S0006-3495(93)81456-5.
5
Cell adhesion nucleation regulated by substrate stiffness: a Monte Carlo study.
J Biomech. 2012 Jan 3;45(1):116-22. doi: 10.1016/j.jbiomech.2011.09.013. Epub 2011 Oct 20.
6
Random pinning limits the size of membrane adhesion domains.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031923. doi: 10.1103/PhysRevE.86.031923. Epub 2012 Sep 27.
7
Adhesive switching of membranes: experiment and theory.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt B):4253-67. doi: 10.1103/physreve.61.4253.
9
Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales.
J Phys Condens Matter. 2018 Jul 11;30(27):273001. doi: 10.1088/1361-648X/aac702. Epub 2018 May 22.
10
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022717. doi: 10.1103/PhysRevE.90.022717. Epub 2014 Aug 25.

引用本文的文献

1
Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness.
iScience. 2022 Jul 4;25(8):104721. doi: 10.1016/j.isci.2022.104721. eCollection 2022 Aug 19.
2
Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles.
Adv Mater Interfaces. 2021 Dec 8;8(23). doi: 10.1002/admi.202101290. Epub 2021 Nov 11.
3
Crowding-induced membrane remodeling: Interplay of membrane tension, polymer density, architecture.
Biophys J. 2022 Oct 4;121(19):3674-3683. doi: 10.1016/j.bpj.2022.05.031. Epub 2022 May 26.
4
Quantification of Curvature Sensing Behavior of Curvature-Inducing Proteins on Model Wavy Substrates.
J Membr Biol. 2022 Jun;255(2-3):175-184. doi: 10.1007/s00232-022-00228-y. Epub 2022 Mar 25.
5
Membrane signalosome: where biophysics meets systems biology.
Curr Opin Syst Biol. 2021 Mar;25:34-41. doi: 10.1016/j.coisb.2021.02.001. Epub 2021 Feb 25.
6
Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
Curr Opin Struct Biol. 2020 Oct;64:104-110. doi: 10.1016/j.sbi.2020.06.023. Epub 2020 Jul 27.

本文引用的文献

1
Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.
Nature. 2018 Aug;560(7718):382-386. doi: 10.1038/s41586-018-0392-8. Epub 2018 Aug 8.
2
Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity.
Biophys J. 2018 Apr 24;114(8):1830-1846. doi: 10.1016/j.bpj.2018.03.007.
3
Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics.
Physiology (Bethesda). 2018 Jan 1;33(1):16-25. doi: 10.1152/physiol.00026.2017.
4
Excess area dependent scaling behavior of nano-sized membrane tethers.
Phys Biol. 2018 Jan 11;15(2):026002. doi: 10.1088/1478-3975/aa9905.
6
Design principles for robust vesiculation in clathrin-mediated endocytosis.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1118-E1127. doi: 10.1073/pnas.1617705114. Epub 2017 Jan 26.
7
Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis.
Cancer Cell. 2016 Dec 12;30(6):836-848. doi: 10.1016/j.ccell.2016.10.009.
9
Membrane curvature in cell biology: An integration of molecular mechanisms.
J Cell Biol. 2016 Aug 15;214(4):375-87. doi: 10.1083/jcb.201604003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验