Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
Disruptive & Sustainable Technologies for Agricultural Precision IRG , Singapore-MIT Alliance for Research and Technology , 1 Create Way , Singapore 138602 , Singapore.
Nano Lett. 2019 Nov 13;19(11):7712-7724. doi: 10.1021/acs.nanolett.9b02647. Epub 2019 Nov 4.
The corona phase-the adsorbed layer of polymer, surfactant, or stabilizer molecules around a nanoparticle-is typically utilized to disperse nanoparticles into a solution or solid phase. However, this phase also controls molecular access to the nanoparticle surface, a property important for catalytic activity and sensor applications. Unfortunately, few methods can directly probe the structure of this corona phase, which is subcategorized as either a hard, immobile corona or a soft, transient corona in exchange with components in the bulk solution. In this work, we introduce a molecular probe adsorption (MPA) method for measuring the accessible nanoparticle surface area using a titration of a quenchable fluorescent molecule. For example, riboflavin is utilized to measure the surface area of gold nanoparticle standards, as well as corona phases on dispersed single-walled carbon nanotubes and graphene sheets. A material balance on the titration yields certain surface coverage parameters, including the ratio of the surface area to dissociation constant of the fluorophore, /, as well as itself. Uncertainty, precision, and the correlation of these parameters across different experimental systems, preparations, and modalities are all discussed. Using MPA across a series of corona phases, we find that the Gibbs free energy of probe binding scales inversely with the cube root of surface area, . In this way, MPA is the only technique to date capable of discerning critical structure-property relationships for such nanoparticle surface phases. Hence, MPA is a rapid quantitative technique that should prove useful for elucidating corona structure for nanoparticles across different systems.
聚合物、表面活性剂或稳定剂分子的吸附层——即 corona 相——通常用于将纳米粒子分散在溶液或固相中。然而,这个相也控制着分子对纳米粒子表面的接近程度,这对于催化活性和传感器应用非常重要。不幸的是,很少有方法可以直接探测这个 corona 相的结构,它被分为硬的、不可移动的 corona 相或软的、与体相成分不断交换的瞬态 corona 相。在这项工作中,我们引入了一种分子探针吸附(MPA)方法,通过滴定可猝灭的荧光分子来测量可接近的纳米粒子表面积。例如,我们利用核黄素来测量金纳米粒子标准品的表面积,以及分散的单壁碳纳米管和石墨烯片上的 corona 相。滴定的物料平衡给出了某些表面覆盖参数,包括荧光团的表面积与离解常数之比,以及 本身。我们讨论了这些参数在不同实验系统、制备和模式下的不确定性、精度和相关性。通过在一系列 corona 相中进行 MPA,我们发现探针结合的吉布斯自由能与表面积的立方根成反比, 。因此,MPA 是迄今为止唯一能够辨别此类纳米粒子表面相的关键结构-性质关系的技术。因此,MPA 是一种快速定量技术,应该有助于阐明不同系统中纳米粒子的 corona 结构。