Suppr超能文献

使用分子探针吸附测量纳米颗粒冠层内的可及表面积。

Measuring the Accessible Surface Area within the Nanoparticle Corona Using Molecular Probe Adsorption.

机构信息

Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.

Disruptive & Sustainable Technologies for Agricultural Precision IRG , Singapore-MIT Alliance for Research and Technology , 1 Create Way , Singapore 138602 , Singapore.

出版信息

Nano Lett. 2019 Nov 13;19(11):7712-7724. doi: 10.1021/acs.nanolett.9b02647. Epub 2019 Nov 4.

Abstract

The corona phase-the adsorbed layer of polymer, surfactant, or stabilizer molecules around a nanoparticle-is typically utilized to disperse nanoparticles into a solution or solid phase. However, this phase also controls molecular access to the nanoparticle surface, a property important for catalytic activity and sensor applications. Unfortunately, few methods can directly probe the structure of this corona phase, which is subcategorized as either a hard, immobile corona or a soft, transient corona in exchange with components in the bulk solution. In this work, we introduce a molecular probe adsorption (MPA) method for measuring the accessible nanoparticle surface area using a titration of a quenchable fluorescent molecule. For example, riboflavin is utilized to measure the surface area of gold nanoparticle standards, as well as corona phases on dispersed single-walled carbon nanotubes and graphene sheets. A material balance on the titration yields certain surface coverage parameters, including the ratio of the surface area to dissociation constant of the fluorophore, /, as well as itself. Uncertainty, precision, and the correlation of these parameters across different experimental systems, preparations, and modalities are all discussed. Using MPA across a series of corona phases, we find that the Gibbs free energy of probe binding scales inversely with the cube root of surface area, . In this way, MPA is the only technique to date capable of discerning critical structure-property relationships for such nanoparticle surface phases. Hence, MPA is a rapid quantitative technique that should prove useful for elucidating corona structure for nanoparticles across different systems.

摘要

聚合物、表面活性剂或稳定剂分子的吸附层——即 corona 相——通常用于将纳米粒子分散在溶液或固相中。然而,这个相也控制着分子对纳米粒子表面的接近程度,这对于催化活性和传感器应用非常重要。不幸的是,很少有方法可以直接探测这个 corona 相的结构,它被分为硬的、不可移动的 corona 相或软的、与体相成分不断交换的瞬态 corona 相。在这项工作中,我们引入了一种分子探针吸附(MPA)方法,通过滴定可猝灭的荧光分子来测量可接近的纳米粒子表面积。例如,我们利用核黄素来测量金纳米粒子标准品的表面积,以及分散的单壁碳纳米管和石墨烯片上的 corona 相。滴定的物料平衡给出了某些表面覆盖参数,包括荧光团的表面积与离解常数之比,以及 本身。我们讨论了这些参数在不同实验系统、制备和模式下的不确定性、精度和相关性。通过在一系列 corona 相中进行 MPA,我们发现探针结合的吉布斯自由能与表面积的立方根成反比, 。因此,MPA 是迄今为止唯一能够辨别此类纳米粒子表面相的关键结构-性质关系的技术。因此,MPA 是一种快速定量技术,应该有助于阐明不同系统中纳米粒子的 corona 结构。

相似文献

1
Measuring the Accessible Surface Area within the Nanoparticle Corona Using Molecular Probe Adsorption.
Nano Lett. 2019 Nov 13;19(11):7712-7724. doi: 10.1021/acs.nanolett.9b02647. Epub 2019 Nov 4.
2
Approximate Corona Phase Hamiltonian for Individual Cylindrical Nanoparticle-Polymer Interactions.
J Phys Chem B. 2022 Jan 13;126(1):347-354. doi: 10.1021/acs.jpcb.1c09998. Epub 2021 Dec 28.
3
Corona Exchange Dynamics on Carbon Nanotubes by Multiplexed Fluorescence Monitoring.
J Am Chem Soc. 2020 Jan 22;142(3):1254-1264. doi: 10.1021/jacs.9b09617. Epub 2020 Jan 10.
4
In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
Acc Chem Res. 2017 Feb 21;50(2):387-395. doi: 10.1021/acs.accounts.6b00579. Epub 2017 Feb 1.
5
Insulin Detection Using a Corona Phase Molecular Recognition Site on Single-Walled Carbon Nanotubes.
ACS Sens. 2018 Feb 23;3(2):367-377. doi: 10.1021/acssensors.7b00788. Epub 2018 Feb 7.
6
Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments.
Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23668-23677. doi: 10.1002/anie.202008175. Epub 2020 Oct 26.
7
Nanoparticle-protein complexes mimicking corona formation in ocular environment.
Biomaterials. 2016 Dec;109:23-31. doi: 10.1016/j.biomaterials.2016.09.008. Epub 2016 Sep 13.
9
Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake.
ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48284-48295. doi: 10.1021/acsami.0c12341. Epub 2020 Oct 15.
10
DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona.
Biointerphases. 2020 Oct 1;15(5):051006. doi: 10.1116/6.0000439.

引用本文的文献

1
Decoding early stress signaling waves in living plants using nanosensor multiplexing.
Nat Commun. 2024 Apr 5;15(1):2943. doi: 10.1038/s41467-024-47082-1.
3
Lipid-Functionalized Single-Walled Carbon Nanotubes as Probes for Screening Cell Wall Disruptors.
ACS Appl Mater Interfaces. 2023 Sep 27;15(38):44621-44630. doi: 10.1021/acsami.3c06592. Epub 2023 Sep 18.
4
Amalgamation of DNAzymes and Nanozymes in a Coronazyme.
J Am Chem Soc. 2023 Mar 15;145(10):5750-5758. doi: 10.1021/jacs.2c12367. Epub 2023 Feb 16.
5
Solution NMR methods for structural and thermodynamic investigation of nanoparticle adsorption equilibria.
Nanoscale Adv. 2022 May 10;4(12):2583-2607. doi: 10.1039/d2na00099g. eCollection 2022 Jun 14.
6
Antibody-Free Rapid Detection of SARS-CoV-2 Proteins Using Corona Phase Molecular Recognition to Accelerate Development Time.
Anal Chem. 2021 Nov 9;93(44):14685-14693. doi: 10.1021/acs.analchem.1c02889. Epub 2021 Oct 26.
7
A synthetic mimic of phosphodiesterase type 5 based on corona phase molecular recognition of single-walled carbon nanotubes.
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26616-26625. doi: 10.1073/pnas.1920352117. Epub 2020 Oct 14.

本文引用的文献

2
A Fluorescent Carbon Nanotube Sensor Detects the Metastatic Prostate Cancer Biomarker uPA.
ACS Sens. 2018 Sep 28;3(9):1838-1845. doi: 10.1021/acssensors.8b00631. Epub 2018 Aug 31.
3
Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates.
Bioconjug Chem. 2018 Aug 15;29(8):2691-2700. doi: 10.1021/acs.bioconjchem.8b00366. Epub 2018 Jul 26.
6
The atom, the molecule, and the covalent organic framework.
Science. 2017 Mar 3;355(6328). doi: 10.1126/science.aal1585.
7
Scalable exfoliation and dispersion of two-dimensional materials - an update.
Phys Chem Chem Phys. 2017 Jan 4;19(2):921-960. doi: 10.1039/c6cp06813h.
8
A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer.
Biosens Bioelectron. 2017 Jun 15;92:618-623. doi: 10.1016/j.bios.2016.10.047. Epub 2016 Oct 20.
9
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
Nat Mater. 2017 Feb;16(2):264-272. doi: 10.1038/nmat4771. Epub 2016 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验