Suppr超能文献

基于 Lasso 分位数周期图的脑电运动想象特征提取

A Lasso quantile periodogram based feature extraction for EEG-based motor imagery.

机构信息

Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi), Université de PARIS-EST, Paris, France; Department of Probability Statistics and Application, University of USTHB, Algiers, Algeria.

Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi), Université de PARIS-EST, Paris, France; Tshwane University of Technology, FSATI, Pretoria, South Africa.

出版信息

J Neurosci Methods. 2019 Dec 1;328:108434. doi: 10.1016/j.jneumeth.2019.108434. Epub 2019 Sep 27.

Abstract

BACKGROUND

The extraction of relevant and distinct features from the electroencephalogram (EEG) signals is one of the most challenging task when implementing Brain Computer Interface (BCI) based systems. Frequency analysis techniques are recognised as one of the most suitable methods to have distinct information from EEG signals. However, existing studies use mostly classical approaches assuming that the signal is Gaussian, stationary and linear. These properties are not verified in the EEG case considering the complexity of the brain electrical activity.

NEW METHOD

This paper proposes two new spectral estimators that are robust against non-Gaussian, non-linear and non-stationary signals. These two approaches use quantile regression and L-norm regularisation to estimate the spectrum of the motor imagery (MI) related EEG.

RESULTS

A dataset collected during a study of BCI motor imagery project conducted at Tshwane University of Technology (TUT), Pretoria, South Africa, is used to validate the proposed estimators. Experimental results demonstrate that the newly proposed approaches help improve the classification performance of MI.

COMPARISON WITH EXISTING METHODS

In order to show the effectiveness of the proposed estimators, a comparative study is conducted, considering classical commonly used techniques such as FFT and Welch periodogram through 5 classification algorithms.

CONCLUSIONS

The proposed Quantile-based spectral estimators are potential methods to improve the classification performance of the EEG-Based motor imagery systems.

摘要

背景

从脑电图 (EEG) 信号中提取相关且独特的特征是实现基于脑机接口 (BCI) 的系统时最具挑战性的任务之一。频率分析技术被认为是从 EEG 信号中获取独特信息的最适合方法之一。然而,现有研究大多采用经典方法,假设信号是高斯、平稳和线性的。考虑到脑电活动的复杂性,这些特性在 EEG 中并不成立。

新方法

本文提出了两种新的谱估计器,它们对非高斯、非线性和非平稳信号具有鲁棒性。这两种方法使用分位数回归和 L 范数正则化来估计运动想象 (MI) 相关 EEG 的频谱。

结果

使用南非比勒陀利亚茨瓦尼科技大学 (TUT) 的 BCI 运动想象项目研究中收集的数据集来验证所提出的估计器。实验结果表明,新提出的方法有助于提高 MI 的分类性能。

与现有方法的比较

为了展示所提出的估计器的有效性,通过 5 种分类算法进行了比较研究,考虑了经典常用技术,如 FFT 和 Welch 周期图。

结论

基于分位数的谱估计器是提高基于 EEG 的运动想象系统分类性能的潜在方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验