Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Crit Rev Biochem Mol Biol. 2019 Aug;54(4):352-370. doi: 10.1080/10409238.2019.1670130. Epub 2019 Oct 1.
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
酵母着丝粒的生物物理研究表明,着丝粒染色质的组织在有丝分裂过程中维持姐妹动粒之间适当张力方面起着至关重要的作用。虽然传统上认为着丝粒染色质是一种简单的弹簧,但最近的研究揭示了着丝粒作为一个多方面、可调谐的减震器。着丝粒在异染色质状态、超螺旋状态和染色体结构维持(SMC)蛋白复合物的富集方面可以与基因组的其他区域不同。这些差异中的每一个都可以用来改变着丝粒染色质的有效刚度。在芽殖酵母中,SMC 蛋白复合物凝聚素和黏合素通过分别形成和交联染色质环,将染色质变成类似于瓶刷的纤维结构,从而使染色质变硬。环的高密度压缩了染色质,同时将张力从纺锤体拉力空间隔离到染色质的一小部分。矛盾的是,通过黏合素和凝聚素对染色质的分子拥挤也会产生向外/极向的力。该结构使着丝粒成为减震器,可以缓冲由动态纺锤体微管产生的可变力。基于从细菌到人类的 SMC 分布以及各种生物中姐妹动粒之间的保守距离(0.4 到 1 微米),我们提出瓶刷机制是真核生物着丝粒功能的基础原理。