Suppr超能文献

开发用于预测老年癌症患者早期死亡的机器学习算法:可用性研究。

Developing Machine Learning Algorithms for the Prediction of Early Death in Elderly Cancer Patients: Usability Study.

作者信息

Sena Gabrielle Ribeiro, Lima Tiago Pessoa Ferreira, Mello Maria Julia Gonçalves, Thuler Luiz Claudio Santos, Lima Jurema Telles Oliveira

机构信息

Department of Geriatric Oncology, Instituto de Medicina Integral Prof Fernando Figueira, Recife, Brazil.

Instituto Federal de Pernambuco - IFPE, Department os Computational Science, Recife, Brazil.

出版信息

JMIR Cancer. 2019 Sep 26;5(2):e12163. doi: 10.2196/12163.

Abstract

BACKGROUND

The importance of classifying cancer patients into high- or low-risk groups has led many research teams, from the biomedical and bioinformatics fields, to study the application of machine learning (ML) algorithms. The International Society of Geriatric Oncology recommends the use of the comprehensive geriatric assessment (CGA), a multidisciplinary tool to evaluate health domains, for the follow-up of elderly cancer patients. However, no applications of ML have been proposed using CGA to classify elderly cancer patients.

OBJECTIVE

The aim of this study was to propose and develop predictive models, using ML and CGA, to estimate the risk of early death in elderly cancer patients.

METHODS

The ability of ML algorithms to predict early mortality in a cohort involving 608 elderly cancer patients was evaluated. The CGA was conducted during admission by a multidisciplinary team and included the following questionnaires: mini-mental state examination (MMSE), geriatric depression scale-short form, international physical activity questionnaire-short form, timed up and go, Katz index of independence in activities of daily living, Charlson comorbidity index, Karnofsky performance scale (KPS), polypharmacy, and mini nutritional assessment-short form (MNA-SF). The 10-fold cross-validation algorithm was used to evaluate all possible combinations of these questionnaires to estimate the risk of early death, considered when occurring within 6 months of diagnosis, in a variety of ML classifiers, including Naive Bayes (NB), decision tree algorithm J48 (J48), and multilayer perceptron (MLP). On each fold of evaluation, tiebreaking is handled by choosing the smallest set of questionnaires.

RESULTS

It was possible to select CGA questionnaire subsets with high predictive capacity for early death, which were either statistically similar (NB) or higher (J48 and MLP) when compared with the use of all questionnaires investigated. These results show that CGA questionnaire selection can improve accuracy rates and decrease the time spent to evaluate elderly cancer patients.

CONCLUSIONS

A simplified predictive model aiming to estimate the risk of early death in elderly cancer patients is proposed herein, minimally composed by the MNA-SF and KPS. We strongly recommend that these questionnaires be incorporated into regular geriatric assessment of older patients with cancer.

摘要

背景

将癌症患者分为高风险或低风险组的重要性促使许多来自生物医学和生物信息学领域的研究团队研究机器学习(ML)算法的应用。国际老年肿瘤学会建议使用综合老年评估(CGA),这是一种评估健康领域的多学科工具,用于老年癌症患者的随访。然而,尚未有人提出使用CGA通过ML对老年癌症患者进行分类的应用。

目的

本研究的目的是使用ML和CGA提出并开发预测模型,以估计老年癌症患者早期死亡的风险。

方法

评估了ML算法预测一个包含608名老年癌症患者的队列中早期死亡率的能力。CGA由一个多学科团队在入院时进行,包括以下问卷:简易精神状态检查表(MMSE)、老年抑郁量表简表、国际体力活动问卷简表、计时起立行走测试、卡茨日常生活活动能力指数、查尔森合并症指数、卡诺夫斯基功能状态量表(KPS)、多重用药情况,以及简易营养评估简表(MNA-SF)。采用10折交叉验证算法评估这些问卷的所有可能组合,以估计在诊断后6个月内发生早期死亡的风险,在多种ML分类器中进行评估,包括朴素贝叶斯(NB)、决策树算法J48(J48)和多层感知器(MLP)。在每次评估中,通过选择最小的问卷集来处理平局情况。

结果

可以选择对早期死亡具有高预测能力的CGA问卷子集,与使用所有调查的问卷相比,这些子集在统计学上相似(NB)或更高(J48和MLP)。这些结果表明,选择CGA问卷可以提高准确率并减少评估老年癌症患者所花费的时间。

结论

本文提出了一种旨在估计老年癌症患者早期死亡风险的简化预测模型,最少由MNA-SF和KPS组成。我们强烈建议将这些问卷纳入老年癌症患者的常规老年评估中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b34/6787529/79698ddc85b2/cancer_v0i0e0_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验