Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA.
Shriners Hospitals for Children Boston, Boston, Massachusetts, USA.
mBio. 2019 Oct 1;10(5):e02211-19. doi: 10.1128/mBio.02211-19.
Skeletal muscle function is compromised in many illnesses, including chronic infections. The quorum sensing (QS) signal, 2-amino acetophenone (2-AA), is produced during acute and chronic infections and excreted in human tissues, including the lungs of cystic fibrosis patients. We have shown that 2-AA facilitates pathogen persistence, likely via its ability to promote the formation of bacterial persister cells, and that it acts as an interkingdom immunomodulatory signal that epigenetically reprograms innate immune functions. Moreover, 2-AA compromises muscle contractility and impacts the expression of genes involved in reactive oxygen species (ROS) homeostasis in skeletal muscle and in mitochondrial functions. Here, we elucidate the molecular mechanisms of 2-AA's impairment of skeletal muscle function and ROS homeostasis. Murine and differentiated C2C12 myotube cell studies showed that 2-AA promotes ROS generation in skeletal muscle via the modulation of xanthine oxidase (XO) activity, NAD(P)H oxidase2 (NOX2) protein level, and the activity of antioxidant enzymes. ROS accumulation triggers the activity of AMP-activated protein kinase (AMPK), likely upstream of the observed locations of induction of ubiquitin ligases Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box (MAFbx), and induces autophagy-related proteins. The protein-level perturbation in skeletal muscle of silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), and uncoupling protein 3 (UCP3) is rescued by the antioxidant N-acetyl-l-cysteine (NAC). Together, these results unveil a novel form of action of a QS bacterial molecule and provide molecular insights into the 2-AA-mediated skeletal muscle dysfunction caused by , a bacterium that is resistant to treatment, causes serious acute, persistent, and relapsing infections in humans. There is increasing evidence that bacterial excreted small molecules play a critical role during infection. We have shown that a quorum sensing (QS)-regulated excreted small molecule, 2-AA, which is abundantly produced by , promotes persistent infections, dampens host inflammation, and triggers mitochondrial dysfunction in skeletal muscle. QS is a cell-to-cell communication system utilized by bacteria to promote collective behaviors. The significance of our study in identifying a mechanism that leads to skeletal muscle dysfunction, via the action of a QS molecule, is that it may open new avenues in the control of muscle loss as a result of infection and sepsis. Given that QS is a common characteristic of prokaryotes, it is possible that 2-AA-like molecules promoting similar effects may exist in other pathogens.
骨骼肌功能在许多疾病中受到损害,包括慢性感染。群体感应(QS)信号 2-氨基苯乙酮(2-AA)在急性和慢性感染期间产生,并排泄在人体组织中,包括囊性纤维化患者的肺部。我们已经表明,2-AA 促进病原体的持续存在,可能是通过促进细菌持久细胞形成的能力,并且它作为一种种间免疫调节信号,通过表观遗传重编程先天免疫功能。此外,2-AA 会损害肌肉收缩性,并影响与骨骼肌中活性氧(ROS)稳态和线粒体功能相关的基因的表达。在这里,我们阐明了 2-AA 损害骨骼肌功能和 ROS 稳态的分子机制。在鼠和分化的 C2C12 肌管细胞研究中,我们发现 2-AA 通过调节黄嘌呤氧化酶(XO)活性、NAD(P)H 氧化酶 2(NOX2)蛋白水平和抗氧化酶的活性,在骨骼肌中促进 ROS 的产生。ROS 的积累引发 AMP 激活的蛋白激酶(AMPK)的活性,可能在观察到诱导泛素连接酶肌肉环指 1(MuRF1)和肌肉萎缩 F 框(MAFbx)的位置之前就引发了该活性,并且诱导自噬相关蛋白。沉默交配型信息调节 2 同源物 1(SIRT1)、过氧化物酶体增殖物激活受体γ共激活因子 1(PGC-1)和解偶联蛋白 3(UCP3)在骨骼肌中的蛋白水平扰动通过抗氧化剂 N-乙酰-l-半胱氨酸(NAC)得到挽救。总的来说,这些结果揭示了一种群体感应细菌分子的新作用形式,并为 2-AA 介导的由 引起的骨骼肌功能障碍提供了分子见解, 是一种对抗生素治疗有抵抗力的细菌,会导致人类严重的急性、持续和复发性感染。越来越多的证据表明,细菌分泌的小分子在感染过程中起着关键作用。我们已经表明,一种群体感应(QS)调节的分泌小分子 2-AA,由 大量产生,可促进持续性感染,减弱宿主炎症,并引发骨骼肌中的线粒体功能障碍。QS 是细菌用于促进集体行为的细胞间通讯系统。我们通过 QS 分子的作用确定导致骨骼肌功能障碍的机制的研究意义在于,它可能为控制感染和败血症引起的肌肉损失开辟新途径。鉴于 QS 是原核生物的共同特征,可能存在其他促进类似作用的 2-AA 样分子。