Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies & Corrosion , Empa , 8600 Dübendorf , Switzerland.
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):39046-39053. doi: 10.1021/acsami.9b10498. Epub 2019 Oct 15.
Precise nanoindentation on AlN/Cu/AlN nanolayer sandwiches has been conducted by using an atomic force microscope to promote fast and directional metal (Cu) outflow upon heating at low temperatures. Local plastic deformation during indentation results in the generation of high defect densities and stress gradients, which not only effectively reduce the activation energies for fast in-plane diffusion but also direct the in-plane transport of confined Cu to the indent location. In addition, a steep chemical potential gradient of O will be established across the AlN barrier upon exposure to air, which drives fast outward diffusion of Cu along defective pathways in the top AlN layer at the indent location. Selective and fast Cu metal outflow can thus be achieved at the indent locations upon annealing at a relatively low temperature of 350 °C for 5 min in air. The microstructures and phase boundaries of the AlN barrier and confined Cu nanolayers are unperturbed outside the plastically deformed region and remain metastable after annealing at 350 °C. By changing the surface processing modes, patterned nanoparticles and isolated nanowire structures can be fabricated straightforwardly. Such local deformation-controlled directional mass transport phenomena can be utilized to manipulate materials down to the atomic scale for designing functional nanoarchitectures for nanophotonic and nanoelectronic applications.
采用原子力显微镜对 AlN/Cu/AlN 纳米层夹层进行精确纳米压痕,在低温下加热时促进快速和定向的金属(Cu)流出。压痕过程中的局部塑性变形导致产生高密度的缺陷和应力梯度,这不仅有效地降低了快速面内扩散的激活能,而且还引导受限 Cu 的面内输运到压痕位置。此外,在空气中暴露时,AlN 势垒中将建立陡峭的 O 化学势梯度,这将促使 Cu 沿着压痕位置的顶层 AlN 层中的缺陷途径快速向外扩散。因此,在空气中以 350°C 退火 5 分钟的相对较低温度下,可以在压痕位置实现选择性和快速的 Cu 金属流出。AlN 势垒和受限 Cu 纳米层的微结构和相界在塑性变形区域之外未受干扰,并且在 350°C 退火后仍处于亚稳状态。通过改变表面处理模式,可以直接制造图案化纳米颗粒和孤立的纳米线结构。这种局部变形控制的定向质量输运现象可用于操纵材料达到原子尺度,为纳米光子学和纳米电子学应用设计功能纳米结构。