Suppr超能文献

机器学习在流行病学和健康结果研究中的应用。

Machine Learning in Epidemiology and Health Outcomes Research.

机构信息

Center for Health Outcomes Research, Saint Louis University, Saint Louis, Missouri 63104, USA; email:

Department of Computer Science, Bellarmine University, Louisville, Kentucky 40205, USA; email:

出版信息

Annu Rev Public Health. 2020 Apr 2;41:21-36. doi: 10.1146/annurev-publhealth-040119-094437. Epub 2019 Oct 2.

Abstract

Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.

摘要

机器学习方法在流行病学数据建模中的应用在文献中越来越普遍。这些方法有可能极大地提高我们对健康的认识和干预机会,远超我们过去的能力。本文通过当前文献中的实例,提供了创建监督机器学习模型的指南。从确定合适的样本和选择特征,到训练、测试和评估性能,机器学习的端到端方法可能是一项艰巨的任务。我们将读者逐步引导到该过程的每个步骤,并讨论机器学习领域的新概念,包括识别治疗效果和解释机器学习模型的输出。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验