Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, 3800, Australia.
Nat Commun. 2019 Oct 2;10(1):4480. doi: 10.1038/s41467-019-12337-9.
The India-Asia collision has formed the highest mountains on Earth and is thought to account for extensive intraplate deformation in Asia. The prevailing explanation considers the role of the Pacific and Sunda subduction zones as passive during deformation. Here we test the hypothesis that subduction played an active role and present geodynamic experiments of continental deformation that model Indian indentation and active subduction rollback. We show that the synchronous activity and interaction of the collision zone and subduction zones explain Asian deformation, and demonstrate that east-west extension in Tibet, eastward continental extrusion and Asian backarc basin formation are controlled by large-scale Pacific and Sunda slab rollback. The models require 1740 ± 300 km of Indian indentation such that backarc basins form and central East Asian extension conforms estimates. Indentation and rollback produce ~260-360 km of eastward extrusion and large-scale clockwise upper mantle circulation from Tibet towards East Asia and back to India.
印度-亚洲碰撞形成了地球上最高的山脉,并被认为是亚洲范围内广泛的板块内变形的原因。流行的解释认为,在变形过程中,太平洋和巽他俯冲带是被动的。在这里,我们检验了俯冲带发挥了积极作用的假设,并提出了大陆变形的地球动力学实验,这些实验模拟了印度的挤压和活跃的俯冲后退。我们表明,碰撞带和俯冲带的同步活动和相互作用解释了亚洲的变形,并证明了西藏的东西向伸展、向东的大陆挤出和亚洲弧后盆地的形成是由大规模的太平洋和巽他板块后退控制的。这些模型需要印度挤压 1740 ± 300 公里,以便形成弧后盆地,并且东亚中部的伸展符合估计值。挤压和后退产生了约 260-360 公里的向东挤出和大规模顺时针的上地幔环流,从西藏流向东亚,再回到印度。