Frontage Laboratories, Inc., Exton, PA, USA.
Frontage Laboratories, Inc., Exton, PA, USA.
Clin Ther. 2019 Nov;41(11):2436-2444. doi: 10.1016/j.clinthera.2019.09.002. Epub 2019 Oct 1.
The industry has adopted Clinical Data Interchange Standards Consortium standards for clinical trial data and the Food and Drug Administration electronic common technical document standard for documents for many years but still faces many challenges. The solutions based on these standards enable integration among solo systems, but the integration needs to be based on business requirements and provides the end-to-end intelligence for the business. The more standards are adopted, the more meaningful and timely metadata are needed to manage the change of the standards and need to be applied in the process. Automation that uses artificial intelligence and machine learning will be the next game changer in the industry to provide data with higher quality and more efficiency. This article discusses the challenges in managing standards adoption, potential approaches for automation through using robotic processes, artificial intelligence, and the maturity model for metadata-driven automation in clinical research.
多年来,制药行业已经采用临床数据交换标准联盟(Clinical Data Interchange Standards Consortium)标准来交换临床试验数据,采用美国食品和药物管理局(Food and Drug Administration)电子通用技术文档标准来交换文件,但仍面临许多挑战。这些标准所基于的解决方案能够实现单一系统之间的集成,但这种集成需要基于业务需求,并为业务提供端到端的智能。采用的标准越多,就越需要有意义且及时的元数据来管理标准的变更,并在流程中加以应用。人工智能和机器学习的自动化将成为行业的下一个变革者,为数据提供更高的质量和更高的效率。本文讨论了管理标准采用方面的挑战,以及通过使用机器人流程自动化、人工智能和元数据驱动自动化的成熟度模型来实现自动化的潜在方法。