Department of Microbiology, University of Manitoba, Winnipeg, Canada.
Armand-Frappier Santé Biotechnologie Center, Institut National de la Recherche Scientifique, Laval, Canada.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01594-19. Print 2019 Dec 15.
During phenylalanine catabolism, phenylacetic acid (PAA) is converted to phenylacetyl coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen , loss of attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either or led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct downregulation by PAA-CoA or PAA, a low-virulence mutant reverted to a virulent phenotype upon removal of the genes. On the other hand, removal of in the mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing CepIR-activated virulence. The opportunistic pathogen uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In , QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in .
在苯丙氨酸代谢过程中,苯乙酸(PAA)通过连接酶 PaaK 转化为苯乙酰辅酶 A(PAA-CoA),然后 PAA-CoA 被多组分单加氧酶 PaaABCDE 环氧化,然后通过三羧酸(TCA)循环进一步降解。在机会性病原体 中,缺失 会减弱毒力因子的表达,这受 LuxIR 样群体感应(QS)系统 CepIR 的控制。为了进一步研究 CepIR 调节的毒力与 PAA 代谢之间的联系,我们创建了该途径的第一步(通过 PaaK 合成 PAA-CoA)的敲除突变体,并通过液相色谱-串联质谱(LC-MS/MS)和毒力测定对其与 突变体进行了比较。我们发现,虽然 PaaABCDE 的缺失会降低毒力,但与野生型菌株相比, 基因的缺失会导致更具毒力的表型。与野生型相比,缺失 或 会导致释放的 PAA 水平升高,但内部积累水平没有差异。虽然我们没有发现 PAA-CoA 或 PAA 直接下调 的证据,但低毒力 突变体在去除 基因后恢复为毒力表型。另一方面,在 突变体中去除 不会影响其衰减表型。总之,我们的结果表明 PAA-CoA 在抑制 CepIR 激活的毒力方面起着间接作用。机会性病原体 使用一种称为群体感应(QS)的化学信号过程来产生毒力因子。在 中,QS 依赖于转录调节剂 CepR 的存在,CepR 在结合 QS 信号分子后激活毒力。在这项工作中,我们发现即使在没有 CepR 的情况下,如果不产生苯乙酰辅酶 A(苯乙酸降解途径的中间产物), 也可以引发致病性反应。相反,苯乙酰辅酶 A 的积累似乎会减弱致病性。因此,我们发现即使没有 CepR,也可以触发毒力,这挑战了这种 QS 机制激活毒力的经典观点。我们的工作为机会性病原体中代谢与毒力之间的关系提供了新的见解。我们提出,在无法积累 QS 信号分子来触发致病性反应的情况下,代谢信号仍可在 中激活毒力。