Suppr超能文献

细胞膜曲率在响应纳米级表面形貌的肌动蛋白重组中起基础作用。

Membrane curvature underlies actin reorganization in response to nanoscale surface topography.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305.

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23143-23151. doi: 10.1073/pnas.1910166116. Epub 2019 Oct 7.

Abstract

Surface topography profoundly influences cell adhesion, differentiation, and stem cell fate control. Numerous studies using a variety of materials demonstrate that nanoscale topographies change the intracellular organization of actin cytoskeleton and therefore a broad range of cellular dynamics in live cells. However, the underlying molecular mechanism is not well understood, leaving why actin cytoskeleton responds to topographical features unexplained and therefore preventing researchers from predicting optimal topographic features for desired cell behavior. Here we demonstrate that topography-induced membrane curvature plays a crucial role in modulating intracellular actin organization. By inducing precisely controlled membrane curvatures using engineered vertical nanostructures as topographies, we find that actin fibers form at the sites of nanostructures in a curvature-dependent manner with an upper limit for the diameter of curvature at ∼400 nm. Nanotopography-induced actin fibers are branched actin nucleated by the Arp2/3 complex and are mediated by a curvature-sensing protein FBP17. Our study reveals that the formation of nanotopography-induced actin fibers drastically reduces the amount of stress fibers and mature focal adhesions to result in the reorganization of actin cytoskeleton in the entire cell. These findings establish the membrane curvature as a key linkage between surface topography and topography-induced cell signaling and behavior.

摘要

表面形貌深刻影响细胞黏附、分化和干细胞命运调控。大量使用各种材料的研究表明,纳米级形貌改变了肌动蛋白细胞骨架的细胞内组织,从而改变了活细胞中广泛的细胞动力学。然而,其潜在的分子机制尚不清楚,这使得肌动蛋白细胞骨架为何对形貌特征产生反应仍未得到解释,因此也阻止了研究人员预测对于所需细胞行为的最佳形貌特征。在这里,我们证明了形貌诱导的膜曲率在调节细胞内肌动蛋白组织中起着关键作用。通过使用工程垂直纳米结构作为形貌来精确控制膜曲率,我们发现肌动蛋白纤维以曲率依赖的方式在纳米结构的位置形成,曲率的上限约为 400nm。纳米形貌诱导的肌动蛋白纤维是由 Arp2/3 复合物引发的分支肌动蛋白,由曲率感应蛋白 FBP17 介导。我们的研究表明,纳米形貌诱导的肌动蛋白纤维的形成大大减少了应力纤维和成熟黏着斑的数量,从而导致整个细胞中肌动蛋白细胞骨架的重组。这些发现确立了膜曲率作为表面形貌和形貌诱导的细胞信号转导和行为之间的关键联系。

相似文献

1
Membrane curvature underlies actin reorganization in response to nanoscale surface topography.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23143-23151. doi: 10.1073/pnas.1910166116. Epub 2019 Oct 7.
2
The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.
Acc Chem Res. 2018 May 15;51(5):1046-1053. doi: 10.1021/acs.accounts.7b00594. Epub 2018 Apr 12.
3
Dynamic Manipulation of Cell Membrane Curvature by Light-Driven Reshaping of Azopolymer.
Nano Lett. 2020 Jan 8;20(1):577-584. doi: 10.1021/acs.nanolett.9b04307. Epub 2019 Dec 19.
4
The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway.
Biomaterials. 2011 Dec;32(36):9568-75. doi: 10.1016/j.biomaterials.2011.08.077. Epub 2011 Sep 16.
5
Branched actin cortices reconstituted in vesicles sense membrane curvature.
Biophys J. 2023 Jun 6;122(11):2311-2324. doi: 10.1016/j.bpj.2023.02.018. Epub 2023 Feb 17.
6
Topographical depth reveals contact guidance mechanism distinct from focal adhesion confinement.
Cytoskeleton (Hoboken). 2024 Apr-May;81(4-5):238-248. doi: 10.1002/cm.21810. Epub 2024 Jan 16.
8
Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment.
J Phys Condens Matter. 2017 Nov 15;29(45):455101. doi: 10.1088/1361-648X/aa8d49.
9
ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis.
Plant Cell Environ. 2014 Jul;37(7):1548-60. doi: 10.1111/pce.12259. Epub 2014 Jan 21.
10
Actin filament curvature biases branching direction.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2913-8. doi: 10.1073/pnas.1114292109. Epub 2012 Jan 30.

引用本文的文献

1
Cellular Responses to Nanoscale Topography Mediated Through the RhoA/ROCK Pathway.
Small. 2025 Aug 18:e05685. doi: 10.1002/smll.202505685.
2
Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane.
Adv Funct Mater. 2025 Feb 5;35(6). doi: 10.1002/adfm.202410035. Epub 2024 Sep 2.
3
Nanoscale Curvature Regulates YAP/TAZ Nuclear Localization Through Nuclear Deformation and Rupture.
Adv Sci (Weinh). 2025 Jul;12(28):e2415029. doi: 10.1002/advs.202415029. Epub 2025 Jun 3.
4
Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings.
Nanomaterials (Basel). 2025 May 9;15(10):716. doi: 10.3390/nano15100716.
5
Acute chromatin decompaction stiffens the nucleus as revealed by nanopillar-induced nuclear deformation in cells.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2416659122. doi: 10.1073/pnas.2416659122. Epub 2025 May 9.
7
Cellular Signaling at the Nano-Bio Interface: Spotlighting Membrane Curvature.
Annu Rev Phys Chem. 2025 Apr;76(1):251-277. doi: 10.1146/annurev-physchem-090722-021151.
8
Tuning the Immune Cell Response through Surface Nanotopography Engineering.
Small Sci. 2024 Jul 21;4(9):2400227. doi: 10.1002/smsc.202400227. eCollection 2024 Sep.
9
Dynamic Plasma Membrane Topography Linked With Arp2/3 Actin Network Induction During Cell Shape Change.
Bioessays. 2025 Jun;47(6):e70004. doi: 10.1002/bies.70004. Epub 2025 Mar 31.
10
Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors.
Front Mol Biosci. 2025 Mar 7;12:1538806. doi: 10.3389/fmolb.2025.1538806. eCollection 2025.

本文引用的文献

1
A nanostructure platform for live-cell manipulation of membrane curvature.
Nat Protoc. 2019 Jun;14(6):1772-1802. doi: 10.1038/s41596-019-0161-7. Epub 2019 May 17.
2
Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery.
ACS Nano. 2019 Mar 26;13(3):2913-2926. doi: 10.1021/acsnano.8b06998. Epub 2019 Mar 4.
3
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton.
Biophys Rev. 2018 Dec;10(6):1587-1604. doi: 10.1007/s12551-018-0467-7. Epub 2018 Nov 19.
4
NanoTopoChip: High-throughput nanotopographical cell instruction.
Acta Biomater. 2017 Oct 15;62:188-198. doi: 10.1016/j.actbio.2017.08.023. Epub 2017 Aug 18.
5
Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy.
ACS Nano. 2017 Aug 22;11(8):8320-8328. doi: 10.1021/acsnano.7b03494. Epub 2017 Jul 21.
6
Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.
Nat Nanotechnol. 2017 Aug;12(8):750-756. doi: 10.1038/nnano.2017.98. Epub 2017 Jun 5.
7
Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency.
Biomaterials. 2017 Feb;116:10-20. doi: 10.1016/j.biomaterials.2016.11.032. Epub 2016 Nov 24.
8
Effects of SiO micropillar arrays on endothelial cells' morphology.
N Biotechnol. 2016 Dec 25;33(6):781-789. doi: 10.1016/j.nbt.2016.07.002. Epub 2016 Jul 16.
9
Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography.
Structure. 2016 Jul 6;24(7):1031-43. doi: 10.1016/j.str.2016.05.004. Epub 2016 Jun 16.
10
Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype.
ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28665-72. doi: 10.1021/acsami.5b10589. Epub 2015 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验