Department of Chemistry, Stanford University, Stanford, CA 94305.
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23143-23151. doi: 10.1073/pnas.1910166116. Epub 2019 Oct 7.
Surface topography profoundly influences cell adhesion, differentiation, and stem cell fate control. Numerous studies using a variety of materials demonstrate that nanoscale topographies change the intracellular organization of actin cytoskeleton and therefore a broad range of cellular dynamics in live cells. However, the underlying molecular mechanism is not well understood, leaving why actin cytoskeleton responds to topographical features unexplained and therefore preventing researchers from predicting optimal topographic features for desired cell behavior. Here we demonstrate that topography-induced membrane curvature plays a crucial role in modulating intracellular actin organization. By inducing precisely controlled membrane curvatures using engineered vertical nanostructures as topographies, we find that actin fibers form at the sites of nanostructures in a curvature-dependent manner with an upper limit for the diameter of curvature at ∼400 nm. Nanotopography-induced actin fibers are branched actin nucleated by the Arp2/3 complex and are mediated by a curvature-sensing protein FBP17. Our study reveals that the formation of nanotopography-induced actin fibers drastically reduces the amount of stress fibers and mature focal adhesions to result in the reorganization of actin cytoskeleton in the entire cell. These findings establish the membrane curvature as a key linkage between surface topography and topography-induced cell signaling and behavior.
表面形貌深刻影响细胞黏附、分化和干细胞命运调控。大量使用各种材料的研究表明,纳米级形貌改变了肌动蛋白细胞骨架的细胞内组织,从而改变了活细胞中广泛的细胞动力学。然而,其潜在的分子机制尚不清楚,这使得肌动蛋白细胞骨架为何对形貌特征产生反应仍未得到解释,因此也阻止了研究人员预测对于所需细胞行为的最佳形貌特征。在这里,我们证明了形貌诱导的膜曲率在调节细胞内肌动蛋白组织中起着关键作用。通过使用工程垂直纳米结构作为形貌来精确控制膜曲率,我们发现肌动蛋白纤维以曲率依赖的方式在纳米结构的位置形成,曲率的上限约为 400nm。纳米形貌诱导的肌动蛋白纤维是由 Arp2/3 复合物引发的分支肌动蛋白,由曲率感应蛋白 FBP17 介导。我们的研究表明,纳米形貌诱导的肌动蛋白纤维的形成大大减少了应力纤维和成熟黏着斑的数量,从而导致整个细胞中肌动蛋白细胞骨架的重组。这些发现确立了膜曲率作为表面形貌和形貌诱导的细胞信号转导和行为之间的关键联系。