Xing Chenyang, Huang Dazhou, Chen Shiyou, Huang Qichen, Zhou Chuanhong, Peng Zhengchun, Li Jiagen, Zhu Xi, Liu Yizhen, Liu Zhipeng, Chen Houkai, Zhao Jinlai, Li Jiangqing, Liu Liping, Cheng Faliang, Fan Dianyuan, Zhang Han
Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China.
Center for Stretchable Electronics and Nanoscale Systems Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China.
Adv Sci (Weinh). 2019 Aug 17;6(19):1900531. doi: 10.1002/advs.201900531. eCollection 2019 Oct 2.
Herein, a core-shell tellurium-selenium (Te-Se) nanomaterial with polymer-tailed and lateral heterojunction structures is developed as a photothermal absorber in a bionic solar-evaporation system. It is further revealed that the amorphous Se shell surrounds the crystalline Te core, which not only protects the Te phase from oxidation but also serves as a natural barrier to life entities. The core (Te)-shell (Se) configuration thus exhibits robust stability enhanced by 0.05 eV per Se atom and excellent biocompatibility. Furthermore, high energy efficiencies of 90.71 ± 0.37% and 86.14 ± 1.02% and evaporation rates of 12.88 ± 0.052 and 1.323 ± 0.015 kg m h are obtained under 10 and 1 sun for simulated seawater, respectively. Importantly, no salting out is observed in salt solutions, and the collected water under natural light irradiation possesses extremely low ion concentrations of Na, K, Ca, and Mg relative to real seawater. Considering the tunable electronic structures, biocompatibilities, and modifiable broadband absorption of the solar spectrum of lateral heterojunction nanomaterials of Te-Se, the way is paved to engineering 2D semiconductor materials with supporting 3D porous hydrophilic materials for application in solar desalination, wastewater treatment, and biomedical ventures.
在此,一种具有聚合物尾链和横向异质结结构的核壳碲 - 硒(Te - Se)纳米材料被开发用作仿生太阳能蒸发系统中的光热吸收体。进一步揭示的是,非晶态硒壳包围着结晶态碲核,这不仅保护碲相不被氧化,而且还作为对生命实体的天然屏障。因此,核(Te) - 壳(Se)结构表现出强大的稳定性,每个硒原子使其稳定性增强0.05电子伏特,并且具有出色的生物相容性。此外,在模拟海水中,10个太阳和1个太阳光照条件下分别获得了90.71±0.37%和86.14±1.02%的高能效,以及12.88±0.052和1.323±0.015 kg m² h⁻¹的蒸发速率。重要的是,在盐溶液中未观察到盐析现象,并且在自然光照射下收集的水相对于实际海水而言,其Na、K、Ca和Mg的离子浓度极低。考虑到Te - Se横向异质结纳米材料可调节的电子结构、生物相容性以及对太阳光谱的可修饰宽带吸收特性,为利用二维半导体材料与三维多孔亲水性材料相结合应用于太阳能海水淡化、废水处理和生物医学领域铺平了道路。