Suppr超能文献

一种用于视神经头光学相干断层扫描图像去噪的深度学习方法。

A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.

机构信息

Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

出版信息

Sci Rep. 2019 Oct 8;9(1):14454. doi: 10.1038/s41598-019-51062-7.

Abstract

Optical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the presence of speckle noise affects the quality of OCT images and its interpretation. Although recent frame-averaging techniques have shown to enhance OCT image quality, they require longer scanning durations, resulting in patient discomfort. Using a custom deep learning network trained with 2,328 'clean B-scans' (multi-frame B-scans; signal averaged), and their corresponding 'noisy B-scans' (clean B-scans + Gaussian noise), we were able to successfully denoise 1,552 unseen single-frame (without signal averaging) B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean signal to noise ratio (SNR) increased from 4.02 ± 0.68 dB (single-frame) to 8.14 ± 1.03 dB (denoised). For all the ONH tissues, the mean contrast to noise ratio (CNR) increased from 3.50 ± 0.56 (single-frame) to 7.63 ± 1.81 (denoised). The mean structural similarity index (MSSIM) increased from 0.13 ± 0.02 (single frame) to 0.65 ± 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort.

摘要

光学相干断层扫描(OCT)已成为视神经头(ONH)组织活体成像的既定临床常规,这对于各种眼部和神经眼部疾病的诊断和管理至关重要。然而,散斑噪声的存在会影响 OCT 图像的质量及其解释。尽管最近的帧平均技术已被证明可以提高 OCT 图像质量,但它们需要更长的扫描时间,导致患者不适。我们使用经过 2328 个“干净 B 扫描”(多帧 B 扫描;信号平均)和相应的“嘈杂 B 扫描”(干净 B 扫描+高斯噪声)训练的自定义深度学习网络,成功地对 1552 个未见过的单帧(无信号平均)B 扫描进行了去噪。去噪后的 B 扫描在质量上与相应的多帧 B 扫描相似,提高了 ONH 组织的可见度。平均信噪比(SNR)从 4.02±0.68dB(单帧)增加到 8.14±1.03dB(去噪)。对于所有的 ONH 组织,平均对比噪声比(CNR)从 3.50±0.56(单帧)增加到 7.63±1.81(去噪)。与相应的多帧 B 扫描相比,平均结构相似性指数(MSSIM)从 0.13±0.02(单帧)增加到 0.65±0.03(去噪)。我们的深度学习算法可以在 20ms 内对 ONH 的单帧 OCT B 扫描进行去噪,从而提供了一种在减少扫描时间和最小化患者不适的情况下获得高质量 OCT B 扫描的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c816/6783551/e6b25d56a767/41598_2019_51062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验