Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany; Insitute of Imaging and Computer Vision, RWTH Aachen, Aachen, Germany.
Mabri.Vision, Aachen, Germany.
J Mech Behav Biomed Mater. 2020 Jan;101:103428. doi: 10.1016/j.jmbbm.2019.103428. Epub 2019 Sep 10.
Response to loading of soft tissues as assessed by advanced magnetic resonance imaging (MRI) techniques is a promising approach to evaluate tissue functionality beyond (statically obtained) structural and compositional features. As cartilage and meniscus pathologies are closely intertwined in osteoarthritis (OA) and beyond, both tissues should ideally be studied to elucidate further the underlying mechanisms involved in load transmission and its failure leading to OA. Hence, we devised, constructed and validated a dedicated MRI-compatible pneumatic force-controlled loading device to study cartilage and meniscus functionality in a standardized and reproducible manner and in reference to alternative tissue evaluation methods. Mechanical reference measurements using digital force sensors confirmed the reproducible application of forces in the range of 0-76N. To demonstrate the device's utility in a basic research context, MRI measurements of human articular cartilage (obtained from the lateral femoral condyle, n = 5) and meniscus (obtained from lateral meniscus body, n = 5) were performed in the unloaded (δ) and loaded configurations (δ: [cartilage] 0.75 bar corresponding to 15.1 N, [meniscus] 2 bar corresponding to 37.1 N; δ: [cartilage] 1.5 bar corresponding to 28.6 N, [meniscus] 4 bar corresponding to 69.1 N). Cartilage samples were directly indented, while meniscus samples were subject to torque-induced compression using a dedicated lever compression device. Morphological MR Imaging using Proton Density-weighted sequences and quantitative MR Imaging using T2 and T1ρ mapping were performed serially and at high resolution. For reference, samples underwent subsequent biomechanical and histological reference evaluation. In conclusion, the force-controlled loading device has been validated for the non-invasive response-to-loading assessment of human cartilage and meniscus samples by advanced MRI techniques. Hereby, both tissues may be functionally evaluated in combination, beyond mere static analysis and in reference to histological and biomechanical measures.
利用先进的磁共振成像(MRI)技术评估软组织的加载反应是一种很有前途的方法,可以评估组织功能,超越(静态获得的)结构和组成特征。由于软骨和半月板病变在骨关节炎(OA)及其他疾病中紧密交织,因此理想情况下应同时研究这两种组织,以进一步阐明涉及负载传递及其导致 OA 失败的潜在机制。因此,我们设计、构建和验证了一种专用的 MRI 兼容气动力控制加载装置,以标准化和可重复的方式研究软骨和半月板的功能,并参考替代的组织评估方法。使用数字力传感器进行的机械参考测量证实了在 0-76N 范围内可重复施加力。为了证明该设备在基础研究中的实用性,对来自外侧股骨髁(n=5)的人关节软骨和来自外侧半月板体(n=5)的半月板进行了未加载(δ)和加载(δ:软骨[0.75]bar 对应 15.1N,半月板[2]bar 对应 37.1N;δ:软骨[1.5]bar 对应 28.6N,半月板[4]bar 对应 69.1N)状态下的 MRI 测量。软骨样本直接进行压痕,而半月板样本则使用专用的杠杆压缩装置进行扭矩诱导压缩。使用质子密度加权序列进行形态学 MRI 成像,并使用 T2 和 T1ρ 映射进行定量 MRI 成像,以高分辨率进行连续成像。作为参考,样本随后进行了生物力学和组织学参考评估。总之,该力控制加载装置已通过先进的 MRI 技术验证,可用于非侵入性的人软骨和半月板样本的加载反应评估。通过这种方式,可以结合使用这两种组织进行功能评估,而不仅仅是静态分析,并参考组织学和生物力学测量。