Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA.
J Biomol NMR. 2019 Sep;73(8-9):509-518. doi: 10.1007/s10858-019-00278-w. Epub 2019 Oct 12.
Riboswitches are structured cis-regulators mainly found in the untranslated regions of messenger RNA. The aptamer domain of a riboswitch serves as a sensor for its ligand, the binding of which triggers conformational changes that regulate the behavior of its expression platform. As a model system for understanding riboswitch structures and functions, the add adenine riboswitch has been studied extensively. However, there is a need for further investigation of the conformational dynamics of the aptamer in light of the recent real-time crystallographic study at room temperature (RT) using an X-ray free electron laser (XFEL) and femtosecond X-ray crystallography (SFX). Herein, we investigate the conformational motions of the add adenine riboswitch aptamer domain, in the presence or absence of adenine, using nuclear magnetic resonance relaxation measurements and analysis of RT atomic displacement factors (B-factors). In the absence of ligand, the P1 duplex undergoes a fast exchange where the overall molecule exhibits a motion at k ~ 319 s, based on imino signals. In the presence of ligand, the P1 duplex adopts a highly ordered conformation, with k~ 83 s, similar to the global motion of the molecule, excluding the loops and binding pocket, at 84 s. The µs-ms motions in both the apo and bound states are consistent with RT B-factors. Reduced spatial atomic fluctuation, ~ 50%, in P1 upon ligand binding coincides with significantly attenuated temporal dynamic exchanges. The binding pocket is structured in the absence or presence of ligand, as evidenced by relatively low and similar RT B-factors. Therefore, despite the dramatic rearrangement of the binding pocket, those residues exhibit similar spatial thermal fluctuation before and after binding.
核糖开关是一种结构上的顺式调控元件,主要存在于信使 RNA 的非翻译区。核糖开关的适体结构域充当其配体的传感器,配体的结合引发构象变化,从而调节其表达平台的行为。作为理解核糖开关结构和功能的模型系统,添加腺嘌呤核糖开关已被广泛研究。然而,鉴于最近使用 X 射线自由电子激光(XFEL)和飞秒 X 射线晶体学(SFX)在室温下进行的实时晶体学研究,需要进一步研究适体的构象动力学。在此,我们使用核磁共振弛豫测量和分析室温原子位移因子(B 因子)研究了添加腺嘌呤核糖开关适体结构域在有无腺嘌呤的情况下的构象运动。在没有配体的情况下,P1 双链体经历快速交换,整个分子表现出 319 s 的运动,基于亚氨基信号。在配体存在的情况下,P1 双链体采用高度有序的构象,与分子的整体运动相似,排除了环和结合口袋,其运动速度为 84 s。无配体和有配体时的µs-ms 运动与室温 B 因子一致。配体结合后 P1 中空间原子波动减少约 50%,与时间动态交换明显减弱一致。结合口袋在有无配体的情况下都具有结构,这可以从相对较低且相似的室温 B 因子得到证明。因此,尽管结合口袋发生了剧烈的重排,但那些残基在结合前后表现出相似的空间热波动。