Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
Biomolecules. 2019 Oct 15;9(10):611. doi: 10.3390/biom9100611.
In the growing field of biomolecular electronics, blue-copper Azurin stands out as one of the most widely studied protein in single-molecule contacts. Interestingly, despite the paramount importance of the structure/dynamics of molecular contacts in their transport properties, these factors remain largely unexplored from the theoretical point of view in the context of single Azurin junctions. Here we address this issue using all-atom Molecular Dynamics (MD) of Pseudomonas Aeruginosa Azurin adsorbed to a Au(111) substrate. In particular, we focus on the structure and dynamics of the free/adsorbed protein and how these properties are altered upon single-point mutations. The results revealed that wild-type Azurin adsorbs on Au(111) along two well defined configurations: one tethered via cysteine groups and the other via the hydrophobic pocket surrounding the Cu 2 + . Surprisingly, our simulations revealed that single amino-acid mutations gave rise to a quenching of protein vibrations ultimately resulting in its overall stiffening. Given the role of amino-acid vibrations and reorientation in the dehydration process at the protein-water-substrate interface, we suggest that this might have an effect on the adsorption process of the mutant, giving rise to new adsorption configurations.
在生物分子电子学这一日益发展的领域中,蓝色铜色蓝蛋白是在单分子接触中研究最多的蛋白质之一。有趣的是,尽管分子接触的结构/动力学对于它们的传输性质至关重要,但从理论角度来看,这些因素在单蓝蛋白结中仍在很大程度上未被探索。在这里,我们使用吸附在 Au(111)基底上的铜绿假单胞菌蓝蛋白的全原子分子动力学(MD)来解决这个问题。具体来说,我们专注于自由/吸附蛋白的结构和动力学,以及这些特性在单点突变时如何改变。结果表明,野生型蓝蛋白沿两种明确的配置吸附在 Au(111)上:一种通过半胱氨酸基团固定,另一种通过围绕 Cu 2 + 的疏水性口袋固定。令人惊讶的是,我们的模拟表明,单个氨基酸突变导致蛋白振动猝灭,最终导致其整体变僵硬。鉴于氨基酸振动和重新定向在蛋白-水-基底界面脱水过程中的作用,我们认为这可能会对突变体的吸附过程产生影响,从而产生新的吸附配置。