Suppr超能文献

通过组合运动原语为仿人机器人生成指向动作。

Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.

作者信息

Tieck J Camilo Vasquez, Schnell Tristan, Kaiser Jacques, Mauch Felix, Roennau Arne, Dillmann Rüdiger

机构信息

FZI Research Center for Information Technology, Karlsruhe, Germany.

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

出版信息

Front Neurorobot. 2019 Sep 18;13:77. doi: 10.3389/fnbot.2019.00077. eCollection 2019.

Abstract

The human motor system is robust, adaptive and very flexible. The underlying principles of human motion provide inspiration for robotics. Pointing at different targets is a common robotics task, where insights about human motion can be applied. Traditionally in robotics, when a motion is generated it has to be validated so that the robot configurations involved are appropriate. The human brain, in contrast, uses the motor cortex to generate new motions reusing and combining existing knowledge before executing the motion. We propose a method to generate and control pointing motions for a robot using a biological inspired architecture implemented with spiking neural networks. We outline a simplified model of the human motor cortex that generates motions using motor primitives. The network learns a base motor primitive for pointing at a target in the center, and four correction primitives to point at targets up, down, left and right from the base primitive, respectively. The primitives are combined to reach different targets. We evaluate the performance of the network with a humanoid robot pointing at different targets marked on a plane. The network was able to combine one, two or three motor primitives at the same time to control the robot in real-time to reach a specific target. We work on extending this work from pointing to a given target to performing a grasping or tool manipulation task. This has many applications for engineering and industry involving real robots.

摘要

人类运动系统强大、适应性强且极为灵活。人类运动的基本原理为机器人技术提供了灵感。指向不同目标是一项常见的机器人任务,有关人类运动的见解可应用于此。传统上在机器人技术中,生成运动时必须进行验证,以确保所涉及的机器人配置合适。相比之下,人类大脑利用运动皮层在执行运动之前重新利用和组合现有知识来生成新的运动。我们提出了一种方法,使用基于脉冲神经网络实现的受生物启发的架构来生成和控制机器人的指向运动。我们概述了一个人类运动皮层的简化模型,该模型使用运动原语来生成运动。该网络学习一个用于指向中心目标的基本运动原语,以及四个分别用于从基本原语向上、向下、向左和向右指向目标的校正原语。这些原语组合起来以到达不同目标。我们使用一个类人机器人指向平面上标记的不同目标来评估该网络的性能。该网络能够同时组合一个、两个或三个运动原语,以实时控制机器人到达特定目标。我们致力于将这项工作从指向给定目标扩展到执行抓取或工具操作任务。这在涉及真实机器人的工程和工业中有许多应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc9/6759768/dabbb657ee24/fnbot-13-00077-g0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验