Suppr超能文献

外源 5-氨基乙酰丙酸提高草莓对渗透胁迫的耐受性及其可能机制。

Exogenous 5-aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms.

机构信息

College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

出版信息

Physiol Plant. 2020 Apr;168(4):948-962. doi: 10.1111/ppl.13038. Epub 2019 Dec 11.

Abstract

Cultivated strawberry, one of the major fruit crops worldwide, is an evergreen plant with shallow root system, and thus sensitive to environmental changes, including drought stress. To investigate the effect of 5-aminolevulinic acid (ALA), a new environment-friendly plant growth regulator, on strawberry drought tolerance and its possible mechanisms, we treated strawberry (Fragaria × annanasa Duch. cv. 'Benihoppe') with 15% polyethylene glycol 6000 to simulate osmotic stress with or without 10 mg l ALA. We found that ALA significantly alleviated PEG-inhibited plant growth and improved water absorption and xylem sap flux, indicating ALA mitigates the adverse effect of osmotic stress on strawberry plants. Gas exchange and chlorophyll fluorescence analysis showed that ALA mitigated PEG-induced decreases of P , G , T , P /C , photosystem I and II reaction center activities, electron transport activity, and photosynthetic performance indexes. Equally important, ALA promoted PEG-increased antioxidant enzyme activities and repressed PEG-increased malondialdehyde and superoxide anion in both leaves and roots. Specially, ALA repressed H O increase in leaves, but stimulated it in roots. Furthermore, ALA repressed abscisic acid (ABA) biosynthesis and signaling gene expressions in leaves, but promoted those in roots. In addition, ALA blocked PEG-downregulated expressions of plasmalemma and tonoplast aquaporin genes PIP and TIP in both leaves and roots. Taken together, ALA effectively enhances strawberry drought tolerance and the mechanism is related to the improvement of water absorption and conductivity. The tissue-specific responses of ABA biosynthesis, ABA signaling, and H O accumulation to ALA in leaves and roots play key roles in ALA-improved strawberry tolerance to osmotic stress.

摘要

栽培草莓是世界上主要的水果作物之一,是一种浅根系的常绿植物,对环境变化敏感,包括干旱胁迫。为了研究新型环保植物生长调节剂 5-氨基乙酰丙酸(ALA)对草莓抗旱性的影响及其可能的机制,我们用 15%聚乙二醇 6000 处理草莓(Fragaria ×ananassa Duch. cv. 'Benihoppe')模拟渗透胁迫,同时或不同时用 10mg·l-1 ALA 处理。我们发现,ALA 显著缓解了 PEG 抑制的植物生长,提高了吸水和木质部汁液流速,表明 ALA 减轻了渗透胁迫对草莓植株的不利影响。气体交换和叶绿素荧光分析表明,ALA 缓解了 PEG 诱导的 P 、G 、T 、P/C 、光系统 I 和 II 反应中心活性、电子传递活性和光合性能指标的降低。同样重要的是,ALA 促进了 PEG 诱导的抗氧化酶活性的增加,抑制了 PEG 诱导的叶片和根系中超氧化物阴离子和丙二醛的增加。特别是,ALA 抑制了叶片中 H 2 O 2 的增加,但刺激了根系中 H 2 O 2 的增加。此外,ALA 抑制了叶片中脱落酸(ABA)生物合成和信号转导基因的表达,但促进了根中这些基因的表达。此外,ALA 阻断了 PEG 下调的叶片和根系质膜和液泡膜水通道基因 PIP 和 TIP 的表达。总之,ALA 有效地增强了草莓的抗旱性,其机制与吸水和导电性的提高有关。ABA 生物合成、ABA 信号和 H 2 O 2 积累在叶片和根系中的组织特异性反应在 ALA 改善草莓对渗透胁迫的耐受性中起着关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验