Ugur Esma, Khan Jafar I, Aydin Erkan, Wang Mingcong, Kirkus Mindaugas, Neophytou Marios, McCulloch Iain, De Wolf Stefaan, Laquai Frédéric
KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia.
J Phys Chem Lett. 2019 Nov 7;10(21):6921-6928. doi: 10.1021/acs.jpclett.9b02502. Epub 2019 Oct 28.
The efficiency of state-of-the-art perovskite solar cells is limited by carrier recombination at defects and interfaces. Thus, understanding these losses and how to reduce them is the way forward toward the Shockley-Queisser limit. Here, we demonstrate that ultrafast transient absorption spectroscopy can directly probe hole extraction and recombination dynamics at perovskite/hole transport layer (HTL) interfaces. To illustrate this, we employed PDPP-3T as HTL because its ground-state absorption is at lower energy than the perovskite's photobleach, enabling direct monitoring of interfacial hole extraction and recombination. Moreover, by fitting the carrier dynamics using a diffusion model, we determined the carrier mobility. Afterwards, by varying the perovskite thickness, we distinguished between carrier diffusion and carrier extraction at the interface. Lastly, we prepared device-like structures, TiO/perovskite/PDPP-3T stacks, and observed reduced carrier recombination in the perovskite. From PDPP-3T carrier dynamics, we deduced that hole extraction is one order faster than recombination of holes at the interface.
最先进的钙钛矿太阳能电池的效率受到缺陷和界面处载流子复合的限制。因此,了解这些损失以及如何减少它们是朝着肖克利-奎塞尔极限迈进的方向。在这里,我们证明了超快瞬态吸收光谱可以直接探测钙钛矿/空穴传输层(HTL)界面处的空穴提取和复合动力学。为了说明这一点,我们采用PDPP-3T作为HTL,因为其基态吸收能量低于钙钛矿的光漂白,从而能够直接监测界面空穴提取和复合。此外,通过使用扩散模型拟合载流子动力学,我们确定了载流子迁移率。之后,通过改变钙钛矿厚度,我们区分了界面处的载流子扩散和载流子提取。最后,我们制备了类似器件的结构,即TiO/钙钛矿/PDPP-3T堆叠,并观察到钙钛矿中载流子复合减少。从PDPP-3T载流子动力学,我们推断空穴提取比界面处空穴复合快一个数量级。