Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
Sci Data. 2019 Oct 22;6(1):218. doi: 10.1038/s41597-019-0241-0.
Prediction modelling with radiomics is a rapidly developing research topic that requires access to vast amounts of imaging data. Methods that work on decentralized data are urgently needed, because of concerns about patient privacy. Previously published computed tomography medical image sets with gross tumour volume (GTV) outlines for non-small cell lung cancer have been updated with extended follow-up. In a previous study, these were referred to as Lung1 (n = 421) and Lung2 (n = 221). The Lung1 dataset is made publicly accessible via The Cancer Imaging Archive (TCIA; https://www.cancerimagingarchive.net ). We performed a decentralized multi-centre study to develop a radiomic signature (hereafter "ZS2019") in one institution and validated the performance in an independent institution, without the need for data exchange and compared this to an analysis where all data was centralized. The performance of ZS2019 for 2-year overall survival validated in distributed radiomics was not statistically different from the centralized validation (AUC 0.61 vs 0.61; p = 0.52). Although slightly different in terms of data and methods, no statistically significant difference in performance was observed between the new signature and previous work (c-index 0.58 vs 0.65; p = 0.37). Our objective was not the development of a new signature with the best performance, but to suggest an approach for distributed radiomics. Therefore, we used a similar method as an earlier study. We foresee that the Lung1 dataset can be further re-used for testing radiomic models and investigating feature reproducibility.
基于影像组学的预测建模是一个快速发展的研究领域,需要获取大量的影像数据。由于担心患者隐私,迫切需要能够在去中心化数据上运行的方法。之前发表的具有非小细胞肺癌大体肿瘤体积(GTV)轮廓的计算机断层扫描医学图像集已经进行了扩展随访。在之前的一项研究中,这些数据集被称为 Lung1(n=421)和 Lung2(n=221)。Lung1 数据集通过癌症影像档案库(TCIA;https://www.cancerimagingarchive.net)公开提供。我们在一个机构中进行了去中心化的多中心研究,开发了一个影像组学特征(以下简称“ZS2019”),并在一个独立的机构中验证了其性能,而无需进行数据交换,并将其与所有数据集中化的分析进行了比较。在分布式影像组学中验证的 2 年总生存率的 ZS2019 性能在统计学上与集中验证没有差异(AUC 0.61 与 0.61;p=0.52)。尽管在数据和方法方面略有不同,但新特征与之前的工作之间没有观察到性能上的统计学显著差异(C 指数 0.58 与 0.65;p=0.37)。我们的目标不是开发具有最佳性能的新特征,而是提出一种分布式影像组学的方法。因此,我们使用了与早期研究类似的方法。我们预计 Lung1 数据集可以进一步重复用于测试影像组学模型和研究特征可重复性。