Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA.
Nat Commun. 2019 Oct 23;10(1):4815. doi: 10.1038/s41467-019-12799-x.
Nanoconfinement could dramatically change molecular transport and reaction kinetics in heterogeneous catalysis. Here we specifically design a core-shell nanocatalyst with aligned linear nanopores for single-molecule studies of the nanoconfinement effects. The quantitative single-molecule measurements reveal unusual lower adsorption strength and higher catalytic activity on the confined metal reaction centres within the nanoporous structure. More surprisingly, the nanoconfinement effects on enhanced catalytic activity are larger for catalysts with longer and narrower nanopores. Experimental evidences, including molecular orientation, activation energy, and intermediate reactive species, have been gathered to provide a molecular level explanation on how the nanoconfinement effects enhance the catalyst activity, which is essential for the rational design of highly-efficient catalysts.
纳米限域作用会显著改变多相催化中的分子输运和反应动力学。在这里,我们特别设计了一种具有取向线性纳米孔的核壳型纳米催化剂,用于对受限环境中纳米限域效应的单分子研究。定量的单分子测量揭示了在纳米多孔结构中受限金属反应中心具有异常低的吸附强度和更高的催化活性。更令人惊讶的是,对于具有更长和更窄纳米孔的催化剂,纳米限域效应对增强的催化活性的影响更大。实验证据,包括分子取向、活化能和中间反应性物种,已经被收集起来,以提供一个分子水平的解释,说明纳米限域效应如何增强催化剂的活性,这对于高效催化剂的合理设计是至关重要的。