Suppr超能文献

基于非溶胀水凝胶的微流控芯片。

Non-swelling hydrogel-based microfluidic chips.

机构信息

College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.

出版信息

Lab Chip. 2019 Dec 7;19(23):3962-3973. doi: 10.1039/c9lc00564a. Epub 2019 Oct 28.

Abstract

Hydrogel-based microfluidic chips are more biologically relevant than conventional polydimethylsiloxane (PDMS) chips, but the inherent swelling of hydrogels leads to a decrease in mechanical performance and deformation of the as-prepared structure in their manufacture and application processing. Non-swelling hydrogel has, for the first time, been utilized to construct microfluidic chips in this study. It was fabricated by covalently cross-linking the biocompatible copolymer of di-acrylated Pluronic F127 (F127-DA). Thanks to their non-swelling property, the hydrogel-based microfluidic chips maintain their as-prepared mechanical strength and channel morphology when equilibrated in aqueous solution at 37 °C. Moreover, the microfluidic chips are autoclavable and show an appropriately slow degradation rate by remaining stable within 21 days of incubation. Based on these properties, a vessel-on-a-chip was established by seeding human umbilical vein endothelial cells (HUVECs) onto the microchannel surfaces inside the microfluidic chip. Under 6 days of perfusion culture with a physiologically relevant shear stress of 5 dyne per cm, the HUVECs in the chip show responsivity to fluid shear stress and express higher endothelial functions than the corresponding static culture. Therefore, non-swelling hydrogel-based microfluidic chips could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips.

摘要

水凝胶基微流控芯片比传统的聚二甲基硅氧烷(PDMS)芯片更具有生物学相关性,但水凝胶的固有溶胀会导致其在制造和应用处理过程中机械性能下降和预制结构变形。本研究首次利用非溶胀水凝胶构建微流控芯片。它是通过共价交联双丙烯酰化的普朗尼克 F127(F127-DA)的生物相容性共聚物制造的。由于其非溶胀特性,水凝胶基微流控芯片在 37°C 的水溶液中达到平衡时,保持其预制的机械强度和通道形态。此外,微流控芯片可高压灭菌,并在孵育 21 天内保持稳定,显示出适当缓慢的降解率。基于这些特性,通过在微流控芯片内部的微通道表面上接种人脐静脉内皮细胞(HUVEC),建立了一个片上器皿。在生理相关的 5 达因/厘米的切应力下灌注培养 6 天,芯片中的 HUVEC 对流体切应力表现出响应性,并表现出比相应的静态培养更高的内皮功能。因此,非溶胀水凝胶基微流控芯片可能适用于细胞/组织相关应用,其性能明显优于传统的 PDMS 或现有的水凝胶基微流控芯片。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验