Graduate School of Environmental Studies , Tohoku University , Sendai 980-8579 , Miyagi , Japan.
ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44161-44169. doi: 10.1021/acsami.9b14213. Epub 2019 Nov 12.
Highly active and inexpensive anode materials are required for large-scale hydrogen production using alkaline water electrolysis (AWE). Here, heterolayered nanostructures of Ni-Fe hydroxides/oxides with high activity for the oxygen evolution reaction (OER) were synthesized on a 316 stainless steel (SS) substrate through constant current density electrolysis. The thicknesses, morphologies, and compositions of the nanostructures, generated through dealloying and surface oxidation of the SS elements with severe oxygen microbubble evolution, were dependent on the electrolysis time. Nanostructural analyses showed that the heterolayered Ni-Fe hydroxide/oxide nanostructures were generated during the initial stage of electrolysis, growing nanofiberlike Ni-Fe hydroxide layers with increasing electrolysis time of up to 5 h. The prolonged electrolysis resulted in densification of the nanofiber structures. The OER overpotential at 10 mA/cm was estimated to be 254 mV at 20 °C, demonstrating better performance than a standard OER catalyst, for example, Ir oxide, and obtaining the value of the Ni-Fe layered double hydroxide (LDH). Furthermore, the OER property surpassed the Ni-Fe LDH catalysts at high current density regions greater than 100 mA/cm. Moreover, stable electrolysis was achieved for 20 h under conditions similar to that of the practical AWE of 400 mA/cm in 20 and 75 °C solution. Therefore, the simple surface modification method could synthesize highly active nanostructures for alkaline water splitting anodes.
需要高效且廉价的阳极材料来实现碱性水电解(AWE)大规模制氢。在此,通过恒电流密度电解,在 316 不锈钢(SS)基底上合成了具有高析氧反应(OER)活性的 Ni-Fe 氢氧化物/氧化物异质层状纳米结构。通过 SS 元素的脱合金和表面氧化(伴随着严重的氧气微泡演化),纳米结构的厚度、形态和组成取决于电解时间。纳米结构分析表明,在电解初始阶段生成了异质层状 Ni-Fe 氢氧化物/氧化物纳米结构,随着电解时间的增加(最长可达 5 h),生成了具有纳米纤维状的 Ni-Fe 氢氧化物层。延长电解时间会导致纳米纤维结构的致密化。在 20°C 下,10 mA/cm 时的 OER 过电势估计为 254 mV,其性能优于标准 OER 催化剂(例如 Ir 氧化物),并达到了 Ni-Fe 层状双氢氧化物(LDH)的水平。此外,在大于 100 mA/cm 的高电流密度区域,OER 性能优于 Ni-Fe LDH 催化剂。此外,在 20 和 75°C 溶液中,电流密度类似于实际 AWE 的 400 mA/cm 的条件下,稳定电解可长达 20 h。因此,这种简单的表面改性方法可以合成用于碱性水分解阳极的高活性纳米结构。