Suppr超能文献

基于 MIMO 雷达的压缩测量 DOA 估计结构。

A MIMO Radar-Based DOA Estimation Structure Using Compressive Measurements.

机构信息

College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China.

Beijing Institute of Remote Sensing Equipment, Beijing 100854, China.

出版信息

Sensors (Basel). 2019 Oct 29;19(21):4706. doi: 10.3390/s19214706.

Abstract

In this paper, we propose a novel direction-of-arrival (DOA) estimation structure based on multiple-input multiple-output (MIMO) radar with colocated antennas, referred to as compressive measurement-based MIMO (CM-MIMO) radar, where the compressive sensing (CS) is employed to reduce the number of channels. Therefore, the system complexity and the computational burden are effectively reduced. It is noted that CS is used after the matched filters and that a measurement matrix with less rows than columns is multiplied with the received signals. As a result, the configurations of the transmit and receive antenna arrays are not affected by the CS and can be determined according to the practical requirements. To study the estimation performance, the Cramér-Rao bound (CRB) with respect to the DOAs of the proposed CM-MIMO radar is analyzed in this paper. The derived CRB expression is also suitable for the conventional MIMO radar by setting the measurement matrix as an identity matrix. Moreover, the CRB expression can work in the under-determined case, since the sum-difference coarray structure is considered. However, the random measurement matrix leads to high information loss, thus compromising the estimation performance. To overcome this problem, we consider that the probability distribution of the DOAs associated with the targets can be obtained in many scenarios and an optimization approach for the measurement matrix is proposed in this paper, where the maximum mutual information criterion is adopted. The superiority of the proposed structure is validated by numerical simulations.

摘要

在本文中,我们提出了一种基于共置天线的多输入多输出(MIMO)雷达的新到达方向(DOA)估计结构,称为基于压缩测量的 MIMO(CM-MIMO)雷达,其中压缩感知(CS)用于减少通道数量。因此,系统复杂度和计算负担得到有效降低。需要注意的是,CS 是在匹配滤波器之后使用的,并且将具有比列数少的行数的测量矩阵与接收信号相乘。因此,发射和接收天线阵列的配置不受 CS 的影响,可以根据实际要求确定。为了研究估计性能,本文分析了所提出的 CM-MIMO 雷达的 DOA 的克拉美罗界(CRB)。通过将测量矩阵设置为单位矩阵,该推导的 CRB 表达式也适用于传统的 MIMO 雷达。此外,由于考虑了和差共阵结构,该 CRB 表达式可用于欠定情况。然而,随机测量矩阵会导致信息大量丢失,从而影响估计性能。为了克服这个问题,我们考虑到在许多场景中可以获得与目标相关的 DOA 的概率分布,并在本文中提出了一种用于测量矩阵的优化方法,其中采用了最大互信息准则。数值模拟验证了所提出结构的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b886/6864732/086493bef3a9/sensors-19-04706-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验