The Marine Biological Association of the United Kingdom, Plymouth, United Kingdom.
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom.
Elife. 2019 Nov 1;8:e50316. doi: 10.7554/eLife.50316.
Efficient searching for resources such as food by animals is key to their survival. It has been proposed that diverse animals from insects to sharks and humans adopt searching patterns that resemble a simple Lévy random walk, which is theoretically optimal for 'blind foragers' to locate sparse, patchy resources. To test if such patterns are generated intrinsically, or arise via environmental interactions, we tracked free-moving larvae with (and without) blocked synaptic activity in the brain, suboesophageal ganglion (SOG) and sensory neurons. In brain-blocked larvae, we found that extended substrate exploration emerges as multi-scale movement paths similar to truncated Lévy walks. Strikingly, power-law exponents of brain/SOG/sensory-blocked larvae averaged 1.96, close to a theoretical optimum ( ≅ 2.0) for locating sparse resources. Thus, efficient spatial exploration can emerge from autonomous patterns in neural activity. Our results provide the strongest evidence so far for the intrinsic generation of Lévy-like movement patterns.
动物有效地搜索食物等资源对其生存至关重要。有人提出,从昆虫到鲨鱼和人类等各种动物采用的搜索模式类似于简单的 Lévy 随机游走,这对于“盲目觅食者”寻找稀疏、分散的资源在理论上是最优的。为了测试这种模式是内在产生的,还是通过环境相互作用产生的,我们跟踪了自由移动的幼虫,这些幼虫的大脑、食管下神经节(SOG)和感觉神经元的突触活动被阻断(或未被阻断)。在大脑被阻断的幼虫中,我们发现,扩展的基质探索会以类似于截断 Lévy 游走的多尺度运动路径出现。引人注目的是,大脑/SOG/感觉神经元被阻断的幼虫的幂律指数平均为 1.96,接近寻找稀疏资源的理论最优值( ≅ 2.0)。因此,有效的空间探索可以从自主的神经活动模式中产生。我们的研究结果为 Lévy 样运动模式的内在产生提供了迄今为止最强有力的证据。