Suppr超能文献

图的联合嵌入。

Joint Embedding of Graphs.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1324-1336. doi: 10.1109/TPAMI.2019.2948619. Epub 2021 Mar 4.

Abstract

Feature extraction and dimension reduction for networks is critical in a wide variety of domains. Efficiently and accurately learning features for multiple graphs has important applications in statistical inference on graphs. We propose a method to jointly embed multiple undirected graphs. Given a set of graphs, the joint embedding method identifies a linear subspace spanned by rank one symmetric matrices and projects adjacency matrices of graphs into this subspace. The projection coefficients can be treated as features of the graphs, while the embedding components can represent vertex features. We also propose a random graph model for multiple graphs that generalizes other classical models for graphs. We show through theory and numerical experiments that under the model, the joint embedding method produces estimates of parameters with small errors. Via simulation experiments, we demonstrate that the joint embedding method produces features which lead to state of the art performance in classifying graphs. Applying the joint embedding method to human brain graphs, we find it extracts interpretable features with good prediction accuracy in different tasks.

摘要

网络的特征提取和降维在各个领域都非常重要。高效准确地学习多个图的特征在图上的统计推断中有重要的应用。我们提出了一种联合嵌入多个无向图的方法。对于一组图,联合嵌入方法识别出由秩一对称矩阵张成的线性子空间,并将图的邻接矩阵投影到这个子空间中。投影系数可以作为图的特征,而嵌入分量可以表示顶点特征。我们还提出了一个用于多图的随机图模型,该模型推广了其他经典的图模型。通过理论和数值实验,我们证明了在该模型下,联合嵌入方法可以产生具有小误差的参数估计。通过仿真实验,我们证明了联合嵌入方法生成的特征可以在图的分类中达到最先进的性能。将联合嵌入方法应用于人类大脑图,我们发现它可以提取出具有良好预测精度的可解释特征,并且在不同任务中表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验