Suppr超能文献

使用机器学习有选择地突出显示患者信息。

Using machine learning to selectively highlight patient information.

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Biomed Inform. 2019 Dec;100:103327. doi: 10.1016/j.jbi.2019.103327. Epub 2019 Oct 29.

Abstract

BACKGROUND

Electronic medical record (EMR) systems need functionality that decreases cognitive overload by drawing the clinician's attention to the right data, at the right time. We developed a Learning EMR (LEMR) system that learns statistical models of clinician information-seeking behavior and applies those models to direct the display of data in future patients. We evaluated the performance of the system in identifying relevant patient data in intensive care unit (ICU) patient cases.

METHODS

To capture information-seeking behavior, we enlisted critical care medicine physicians who reviewed a set of patient cases and selected data items relevant to the task of presenting at morning rounds. Using patient EMR data as predictors, we built machine learning models to predict their relevancy. We prospectively evaluated the predictions of a set of high performing models.

RESULTS

On an independent evaluation data set, 25 models achieved precision of 0.52, 95% CI [0.49, 0.54] and recall of 0.77, 95% CI [0.75, 0.80] in identifying relevant patient data items. For data items missed by the system, the reviewers rated the effect of not seeing those data from no impact to minor impact on patient care in about 82% of the cases.

CONCLUSION

Data-driven approaches for adaptively displaying data in EMR systems, like the LEMR system, show promise in using information-seeking behavior of clinicians to identify and highlight relevant patient data.

摘要

背景

电子病历(EMR)系统需要通过在适当的时间将临床医生的注意力吸引到正确的数据上来减少认知负担。我们开发了一种学习型电子病历(LEMR)系统,该系统可以学习临床医生信息搜索行为的统计模型,并将这些模型应用于指导未来患者的数据显示。我们评估了该系统在识别重症监护病房(ICU)患者病例中相关患者数据方面的性能。

方法

为了捕获信息搜索行为,我们招募了重症监护医学医师,他们审查了一组患者病例并选择了与在早晨查房时呈现相关的数据项。我们使用患者的 EMR 数据作为预测变量,构建了机器学习模型来预测其相关性。我们前瞻性地评估了一组表现良好的模型的预测结果。

结果

在独立的评估数据集上,25 个模型在识别相关患者数据项方面的精度为 0.52,95%置信区间[0.49, 0.54],召回率为 0.77,95%置信区间[0.75, 0.80]。对于系统错过的数据项,审查者在大约 82%的情况下对未看到这些数据对患者护理的影响进行了从无影响到轻微影响的评分。

结论

像 LEMR 系统这样的 EMR 系统中用于自适应显示数据的数据驱动方法有望利用临床医生的信息搜索行为来识别和突出相关的患者数据。

相似文献

1
Using machine learning to selectively highlight patient information.
J Biomed Inform. 2019 Dec;100:103327. doi: 10.1016/j.jbi.2019.103327. Epub 2019 Oct 29.
4
Graphical Presentations of Clinical Data in a Learning Electronic Medical Record.
Appl Clin Inform. 2020 Aug;11(4):680-691. doi: 10.1055/s-0040-1709707. Epub 2020 Oct 14.
6
Modeling physician variability to prioritize relevant medical record information.
JAMIA Open. 2020 Dec 31;3(4):602-610. doi: 10.1093/jamiaopen/ooaa058. eCollection 2020 Dec.
8
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.
9
The Dependence of Machine Learning on Electronic Medical Record Quality.
AMIA Annu Symp Proc. 2018 Apr 16;2017:883-891. eCollection 2017.

引用本文的文献

2
Modelling of physicians' clinical information-seeking behaviour in Iran: a grounded theory study.
BMJ Open. 2024 Apr 16;14(4):e080602. doi: 10.1136/bmjopen-2023-080602.
3
Machine learning-based prediction of low-value care for hospitalized patients.
Intell Based Med. 2023;8. doi: 10.1016/j.ibmed.2023.100115. Epub 2023 Oct 23.
5
The Role of Data Science in Closing the Implementation Gap.
Crit Care Clin. 2023 Oct;39(4):701-716. doi: 10.1016/j.ccc.2023.03.005. Epub 2023 Apr 7.
6
A voice-based digital assistant for intelligent prompting of evidence-based practices during ICU rounds.
J Biomed Inform. 2023 Oct;146:104483. doi: 10.1016/j.jbi.2023.104483. Epub 2023 Aug 30.
9
Initial Development of an Automated Platform for Assessing Trainee Performance on Case Presentations.
ATS Sch. 2022 Sep 23;3(4):548-560. doi: 10.34197/ats-scholar.2022-0010OC. eCollection 2022 Dec.
10
Enhancing Diagnosis Through Technology: Decision Support, Artificial Intelligence, and Beyond.
Crit Care Clin. 2022 Jan;38(1):129-139. doi: 10.1016/j.ccc.2021.08.004.

本文引用的文献

1
Critical care information display approaches and design frameworks: A systematic review and meta-analysis.
J Biomed Inform. 2019;100S:100041. doi: 10.1016/j.yjbinx.2019.100041. Epub 2019 Jun 22.
2
Improving Clinician Decisions and Communication in Critical Care Using Novel Information Technology.
Mil Med. 2020 Feb 12;185(1-2):e254-e261. doi: 10.1093/milmed/usz151.
4
Data Omission by Physician Trainees on ICU Rounds.
Crit Care Med. 2019 Mar;47(3):403-409. doi: 10.1097/CCM.0000000000003557.
5
A framework for data-driven adaptive GUI generation based on DICOM.
J Biomed Inform. 2018 Dec;88:37-52. doi: 10.1016/j.jbi.2018.10.009. Epub 2018 Nov 9.
8
Health IT Usability Focus Section: Data Use and Navigation Patterns among Medical ICU Clinicians during Electronic Chart Review.
Appl Clin Inform. 2017 Oct;8(4):1117-1126. doi: 10.4338/ACI-2017-06-RA-0110. Epub 2017 Dec 14.
10
Physician activity during outpatient visits and subjective workload.
J Biomed Inform. 2017 May;69:135-149. doi: 10.1016/j.jbi.2017.03.011. Epub 2017 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验