Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
J Biomed Inform. 2019 Dec;100:103327. doi: 10.1016/j.jbi.2019.103327. Epub 2019 Oct 29.
Electronic medical record (EMR) systems need functionality that decreases cognitive overload by drawing the clinician's attention to the right data, at the right time. We developed a Learning EMR (LEMR) system that learns statistical models of clinician information-seeking behavior and applies those models to direct the display of data in future patients. We evaluated the performance of the system in identifying relevant patient data in intensive care unit (ICU) patient cases.
To capture information-seeking behavior, we enlisted critical care medicine physicians who reviewed a set of patient cases and selected data items relevant to the task of presenting at morning rounds. Using patient EMR data as predictors, we built machine learning models to predict their relevancy. We prospectively evaluated the predictions of a set of high performing models.
On an independent evaluation data set, 25 models achieved precision of 0.52, 95% CI [0.49, 0.54] and recall of 0.77, 95% CI [0.75, 0.80] in identifying relevant patient data items. For data items missed by the system, the reviewers rated the effect of not seeing those data from no impact to minor impact on patient care in about 82% of the cases.
Data-driven approaches for adaptively displaying data in EMR systems, like the LEMR system, show promise in using information-seeking behavior of clinicians to identify and highlight relevant patient data.
电子病历(EMR)系统需要通过在适当的时间将临床医生的注意力吸引到正确的数据上来减少认知负担。我们开发了一种学习型电子病历(LEMR)系统,该系统可以学习临床医生信息搜索行为的统计模型,并将这些模型应用于指导未来患者的数据显示。我们评估了该系统在识别重症监护病房(ICU)患者病例中相关患者数据方面的性能。
为了捕获信息搜索行为,我们招募了重症监护医学医师,他们审查了一组患者病例并选择了与在早晨查房时呈现相关的数据项。我们使用患者的 EMR 数据作为预测变量,构建了机器学习模型来预测其相关性。我们前瞻性地评估了一组表现良好的模型的预测结果。
在独立的评估数据集上,25 个模型在识别相关患者数据项方面的精度为 0.52,95%置信区间[0.49, 0.54],召回率为 0.77,95%置信区间[0.75, 0.80]。对于系统错过的数据项,审查者在大约 82%的情况下对未看到这些数据对患者护理的影响进行了从无影响到轻微影响的评分。
像 LEMR 系统这样的 EMR 系统中用于自适应显示数据的数据驱动方法有望利用临床医生的信息搜索行为来识别和突出相关的患者数据。