School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
Geographical and Sustainability Sciences Department, University of Iowa, Iowa City, IA 52242, USA.
Sci Total Environ. 2020 Jan 10;699:134244. doi: 10.1016/j.scitotenv.2019.134244. Epub 2019 Sep 2.
Fine particulate matter (PM2.5) is an important haze index, and the researches on the evolutionary characteristics of the PM2.5 concentration will provide a fundamental and guiding prerequisite for the haze prediction. However, the past researchers were usually based on the overall time-domain evolution information of PM2.5. Since the temporal evolution of PM2.5 concentration is nonstationary, previous studies might neglect some important localization features that the evolution has various predominant periods at different scales. Therefore, we applied the wavelet transform to study the localized intermittent oscillations of PM2.5. First, we analyze the daily average PM2.5 concentration collected from the automatic monitoring stations. The result reveals that the predominant oscillation period does vary with time. There exist multiple oscillation periods on the scale of 14-32 d, 62-104 d, 105-178 d and 216-389 d and the 298d is the first dominant period in the entire evolutionary process. Moreover, we want to figure out whether the temporal characteristics of PM2.5 in the days with heavy haze also have localized intermittent periodicities. We select the hourly average PM2.5 concentration in 120 h when the haze pollution is serious. We find that the principal period has experienced two abrupt shifts and the energy at the 63-hour scale is the most powerful. The results in these two independent analyses come into the same conclusion that the multiscale features shown in the temporal evolution of PM2.5 cannot be ignored and may play an important role in the further haze prediction.
细颗粒物(PM2.5)是一个重要的雾霾指数,研究 PM2.5 浓度的演变特征为雾霾预测提供了基本的和指导性的前提。然而,过去的研究人员通常基于 PM2.5 的整体时域演变信息。由于 PM2.5 浓度的时间演变是非平稳的,之前的研究可能忽略了一些重要的局部化特征,即演变在不同尺度上具有不同的主导周期。因此,我们应用小波变换来研究 PM2.5 的局部间歇振荡。首先,我们分析了自动监测站采集的日平均 PM2.5 浓度。结果表明,主要的振荡周期确实随时间而变化。在 14-32 d、62-104 d、105-178 d 和 216-389 d 的尺度上存在多个振荡周期,298 d 是整个演变过程中的第一个主导周期。此外,我们还想弄清楚重霾日的 PM2.5 时间特征是否也具有局部间歇周期性。我们选择了雾霾污染严重时的 120 小时内每小时的 PM2.5 浓度。我们发现,主要周期经历了两次突然转变,63 小时尺度的能量最强。这两个独立分析的结果得出了相同的结论,即 PM2.5 时间演变中显示的多尺度特征不容忽视,可能在进一步的雾霾预测中发挥重要作用。