Murphy Kyle R, Inglis Andrew R, Sibeck David G, Rae I Jonathan, Watt Clare E J, Silveira Marcos, Plaschke Ferdinand, Claudepierre Seth G, Nakamura Rumi
Department of Astronomy University of Maryland College Park MD USA.
Physics Department Catholic University of America Washington DC USA.
J Geophys Res Space Phys. 2018 Aug;123(8):6457-6477. doi: 10.1029/2017JA024877. Epub 2018 Aug 18.
Ultralow frequency (ULF) waves play a fundamental role in the dynamics of the inner magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion, and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the Magnetospheric Multiscale spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSS compresses the dayside magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner magnetospheric and radiation belt dynamics.
超低频(ULF)波在地磁暴期间内磁层和外辐射带的动力学中起着基础性作用。宽带ULF波功率可通过径向扩散传输高能电子,而离散ULF波功率可通过共振相互作用使电子获得能量。利用磁层多尺度任务的观测数据,我们描述了在高速太阳风流(HSS)和中等强度地磁暴期间外辐射带增强时ULF波的演化。在高速太阳风流期间,使用振荡自动耀斑推断代码来区分离散ULF波功率和宽带波功率。在离散波功率期间,并利用磁层多尺度航天器的近距离分离,我们估算了整个地磁暴期间环向模式ULF方位波数。我们关注环向模式,因为高速太阳风流压缩了向日面磁层,导致磁场拓扑结构不对称,在这种情况下环向模式波可与高能电子相互作用。对模式结构和波数的分析表明,观测到的ULF波的产生是由外部驱动波(通过开尔文 - 亥姆霍兹不稳定性)和内部驱动波(通过不稳定离子分布)共同作用的结果。对周期和环向方位波数的进一步分析表明,在暴期间这些波可通过漂移共振与核心电子辐射带粒子耦合。ULF波功率(宽带或离散)的方位波数和结构对内磁层和辐射带动力学具有重要意义。