Suppr超能文献

HLA-B27 介导的 TNAP 磷酸酶激活促进强直性脊柱炎中的病理性骨桥形成。

HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis.

机构信息

Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.

School of Medicine, Tzu Chi University, Hualien, Taiwan.

出版信息

J Clin Invest. 2019 Dec 2;129(12):5357-5373. doi: 10.1172/JCI125212.

Abstract

Ankylosing spondylitis (AS) is a type of axial inflammation. Over time, some patients develop spinal ankylosis and permanent disability; however, current treatment strategies cannot arrest syndesmophyte formation completely. Here, we used mesenchymal stem cells (MSCs) from AS patients (AS MSCs) within the enthesis involved in spinal ankylosis to delineate that the HLA-B27-mediated spliced X-box-binding protein 1 (sXBP1)/retinoic acid receptor-β (RARB)/tissue-nonspecific alkaline phosphatase (TNAP) axis accelerated the mineralization of AS MSCs, which was independent of Runt-related transcription factor 2 (Runx2). An animal model mimicking AS pathological bony appositions was established by implantation of AS MSCs into the lumbar spine of NOD-SCID mice. We found that TNAP inhibitors, including levamisole and pamidronate, inhibited AS MSC mineralization in vitro and blocked bony appositions in vivo. Furthermore, we demonstrated that the serum bone-specific TNAP (BAP) level was a potential prognostic biomarker to predict AS patients with a high risk for radiographic progression. Our study highlights the importance of the HLA-B27-mediated activation of the sXBP1/RARB/TNAP axis in AS syndesmophyte pathogenesis and provides a new strategy for the diagnosis and prevention of radiographic progression of AS.

摘要

强直性脊柱炎(AS)是一种轴性炎症。随着时间的推移,一些患者会出现脊柱融合和永久性残疾;然而,目前的治疗策略并不能完全阻止骨桥的形成。在这里,我们使用涉及脊柱融合的附着点中的 AS 患者的间充质干细胞(AS-MSCs)来阐明 HLA-B27 介导的剪接 X 盒结合蛋白 1(sXBP1)/视黄酸受体-β(RARB)/组织非特异性碱性磷酸酶(TNAP)轴加速了 AS-MSCs 的矿化,这与 Runt 相关转录因子 2(Runx2)无关。通过将 AS-MSCs 植入 NOD-SCID 小鼠的腰椎来建立模拟 AS 病理性骨附着的动物模型。我们发现 TNAP 抑制剂,包括左旋咪唑和帕米膦酸,可抑制体外 AS-MSC 的矿化,并阻断体内的骨附着。此外,我们证明了血清骨特异性 TNAP(BAP)水平是预测 AS 患者影像学进展高风险的潜在预后生物标志物。我们的研究强调了 HLA-B27 介导的 sXBP1/RARB/TNAP 轴激活在 AS 骨桥形成发病机制中的重要性,并为 AS 影像学进展的诊断和预防提供了新的策略。

相似文献

2
Syndesmophyte Growth in Ankylosing Spondylitis: from Laboratory to Bedside.
Curr Rheumatol Rep. 2023 Jul;25(7):119-127. doi: 10.1007/s11926-023-01104-x. Epub 2023 May 1.
5
Regulation of osteoblasts by alkaline phosphatase in ankylosing spondylitis.
Int J Rheum Dis. 2019 Feb;22(2):252-261. doi: 10.1111/1756-185X.13419. Epub 2018 Nov 11.
6
The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis.
Semin Immunopathol. 2021 Apr;43(2):235-243. doi: 10.1007/s00281-021-00838-z. Epub 2021 Jan 22.
7
Is there a common pathogenesis in aggressive periodontitis & ankylosing spondylitis in HLA-B27 patient?
Med Hypotheses. 2016 May;90:63-5. doi: 10.1016/j.mehy.2016.03.005. Epub 2016 Mar 12.

引用本文的文献

2
Recent Advances in the Immunopathology of Axial Spondyloarthritis: with and without HLA-B27.
Curr Rheumatol Rep. 2025 Jun 21;27(1):27. doi: 10.1007/s11926-025-01194-9.
3
HLA-B27 and spondyloarthritis: at the crossroads of innate and adaptive immunity.
Nat Rev Rheumatol. 2025 Feb;21(2):77-87. doi: 10.1038/s41584-024-01189-3. Epub 2024 Dec 2.
4
Application of methylation in the diagnosis of ankylosing spondylitis.
Clin Rheumatol. 2024 Oct;43(10):3073-3082. doi: 10.1007/s10067-024-07113-0. Epub 2024 Aug 21.
5
IRE1α pathway: A potential bone metabolism mediator.
Cell Prolif. 2024 Oct;57(10):e13654. doi: 10.1111/cpr.13654. Epub 2024 May 12.
6
Fibroblast Insights into the Pathogenesis of Ankylosing Spondylitis.
J Inflamm Res. 2023 Dec 22;16:6301-6317. doi: 10.2147/JIR.S439604. eCollection 2023.
7
Cellular microenvironment: a key for tuning mesenchymal stem cell senescence.
Front Cell Dev Biol. 2023 Dec 4;11:1323678. doi: 10.3389/fcell.2023.1323678. eCollection 2023.
8
Osteoimmunology of Spondyloarthritis.
Int J Mol Sci. 2023 Oct 5;24(19):14924. doi: 10.3390/ijms241914924.
10
The bone marrow side of axial spondyloarthritis.
Nat Rev Rheumatol. 2023 Aug;19(8):519-532. doi: 10.1038/s41584-023-00986-6. Epub 2023 Jul 5.

本文引用的文献

1
Progress in our understanding of the pathogenesis of ankylosing spondylitis.
Rheumatology (Oxford). 2018 Aug 1;57(suppl_6):vi4-vi9. doi: 10.1093/rheumatology/key001.
2
3D bioactive composite scaffolds for bone tissue engineering.
Bioact Mater. 2017 Dec 1;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001. eCollection 2018 Sep.
4
A review of fibrin and fibrin composites for bone tissue engineering.
Int J Nanomedicine. 2017 Jul 12;12:4937-4961. doi: 10.2147/IJN.S124671. eCollection 2017.
5
A novel role for bone-derived cells in ankylosing spondylitis: Focus on IL-23.
Biochem Biophys Res Commun. 2017 Sep 23;491(3):787-793. doi: 10.1016/j.bbrc.2017.07.079. Epub 2017 Jul 18.
6
Accelerated osteogenic differentiation of human bone-derived cells in ankylosing spondylitis.
J Bone Miner Metab. 2018 May;36(3):307-313. doi: 10.1007/s00774-017-0846-3. Epub 2017 Jun 6.
7
Brief Report: Group 3 Innate Lymphoid Cells in Human Enthesis.
Arthritis Rheumatol. 2017 Sep;69(9):1816-1822. doi: 10.1002/art.40150. Epub 2017 Aug 8.
8
Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (Review).
Mol Med Rep. 2017 Apr;15(4):1943-1951. doi: 10.3892/mmr.2017.6248. Epub 2017 Feb 24.
10
MCP1 triggers monocyte dysfunctions during abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis.
J Mol Med (Berl). 2017 Feb;95(2):143-154. doi: 10.1007/s00109-016-1489-x. Epub 2016 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验