Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , United States.
Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , United States.
ACS Chem Biol. 2019 Dec 20;14(12):2793-2799. doi: 10.1021/acschembio.9b00678. Epub 2019 Nov 14.
Site-specific introduction of bioorthogonal handles into biomolecules provides powerful tools for studying and manipulating the structures and functions of proteins. Recent advances in bioorthogonal chemistry demonstrate that tetrazine-based bioorthogonal cycloaddition is a particularly useful methodology due to its high reactivity, biological selectivity, and turn-on property for fluorescence imaging. Despite its broad applications in protein labeling and imaging, utilization of tetrazine-based bioorthogonal cycloaddition has been limited to date by the requirement of a hydrophobic strained alkene reactive moiety. Circumventing this structural requirement, we report the site-specific incorporation of noncanonical amino acids (ncAAs) with a small isocyanide (or isonitrile) group into proteins in both bacterial and mammalian cells. We showed that under physiological conditions and in the absence of a catalyst these isocyanide-containing ncAAs could react selectively with tetrazine molecules via [4 + 1]-cycloaddition, thus providing a versatile bioorthogonal handle for site-specific protein labeling and protein decaging. Significantly, these bioorthogonal reactions between isocyanides and tetrazines also provide a unique mechanism for the activation of tetrazine-quenched fluorophores. The addition of these isocyanide-containing ncAAs to the list of 20 commonly used, naturally occurring amino acids expands our repertoire of reagents for bioorthogonal chemistry, therefore enabling new biological applications ranging from protein labeling and imaging studies to the chemical activation of proteins.
将生物正交接头特异性地引入生物分子中,为研究和操纵蛋白质的结构和功能提供了强大的工具。生物正交化学的最新进展表明,基于四嗪的生物正交环加成是一种特别有用的方法,因为它具有高反应性、生物选择性和荧光成像的开启特性。尽管基于四嗪的生物正交环加成在蛋白质标记和成像方面有广泛的应用,但迄今为止,其应用受到需要疏水性应变烯反应部分的限制。为了规避这一结构要求,我们报告了在细菌和哺乳动物细胞中特异性地将带有小异氰化物(或异腈)基团的非天然氨基酸(ncAAs)掺入蛋白质中。我们表明,在生理条件下且没有催化剂的情况下,这些含异氰化物的 ncAAs 可以通过 [4 + 1]-环加成选择性地与四嗪分子反应,从而为蛋白质的特异性标记和蛋白质去封闭提供了一种通用的生物正交接头。重要的是,异氰化物和四嗪之间的这些生物正交反应也为四嗪猝灭荧光团的激活提供了一种独特的机制。将这些含异氰化物的 ncAAs 添加到 20 种常用的天然氨基酸列表中,扩展了我们用于生物正交化学的试剂库,因此能够实现从蛋白质标记和成像研究到蛋白质化学激活的新的生物学应用。