Suppr超能文献

将含异氰酸酯氨基酸添加到遗传密码中用于蛋白质标记和激活。

Addition of Isocyanide-Containing Amino Acids to the Genetic Code for Protein Labeling and Activation.

机构信息

Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , United States.

Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , United States.

出版信息

ACS Chem Biol. 2019 Dec 20;14(12):2793-2799. doi: 10.1021/acschembio.9b00678. Epub 2019 Nov 14.

Abstract

Site-specific introduction of bioorthogonal handles into biomolecules provides powerful tools for studying and manipulating the structures and functions of proteins. Recent advances in bioorthogonal chemistry demonstrate that tetrazine-based bioorthogonal cycloaddition is a particularly useful methodology due to its high reactivity, biological selectivity, and turn-on property for fluorescence imaging. Despite its broad applications in protein labeling and imaging, utilization of tetrazine-based bioorthogonal cycloaddition has been limited to date by the requirement of a hydrophobic strained alkene reactive moiety. Circumventing this structural requirement, we report the site-specific incorporation of noncanonical amino acids (ncAAs) with a small isocyanide (or isonitrile) group into proteins in both bacterial and mammalian cells. We showed that under physiological conditions and in the absence of a catalyst these isocyanide-containing ncAAs could react selectively with tetrazine molecules via [4 + 1]-cycloaddition, thus providing a versatile bioorthogonal handle for site-specific protein labeling and protein decaging. Significantly, these bioorthogonal reactions between isocyanides and tetrazines also provide a unique mechanism for the activation of tetrazine-quenched fluorophores. The addition of these isocyanide-containing ncAAs to the list of 20 commonly used, naturally occurring amino acids expands our repertoire of reagents for bioorthogonal chemistry, therefore enabling new biological applications ranging from protein labeling and imaging studies to the chemical activation of proteins.

摘要

将生物正交接头特异性地引入生物分子中,为研究和操纵蛋白质的结构和功能提供了强大的工具。生物正交化学的最新进展表明,基于四嗪的生物正交环加成是一种特别有用的方法,因为它具有高反应性、生物选择性和荧光成像的开启特性。尽管基于四嗪的生物正交环加成在蛋白质标记和成像方面有广泛的应用,但迄今为止,其应用受到需要疏水性应变烯反应部分的限制。为了规避这一结构要求,我们报告了在细菌和哺乳动物细胞中特异性地将带有小异氰化物(或异腈)基团的非天然氨基酸(ncAAs)掺入蛋白质中。我们表明,在生理条件下且没有催化剂的情况下,这些含异氰化物的 ncAAs 可以通过 [4 + 1]-环加成选择性地与四嗪分子反应,从而为蛋白质的特异性标记和蛋白质去封闭提供了一种通用的生物正交接头。重要的是,异氰化物和四嗪之间的这些生物正交反应也为四嗪猝灭荧光团的激活提供了一种独特的机制。将这些含异氰化物的 ncAAs 添加到 20 种常用的天然氨基酸列表中,扩展了我们用于生物正交化学的试剂库,因此能够实现从蛋白质标记和成像研究到蛋白质化学激活的新的生物学应用。

相似文献

1
Addition of Isocyanide-Containing Amino Acids to the Genetic Code for Protein Labeling and Activation.
ACS Chem Biol. 2019 Dec 20;14(12):2793-2799. doi: 10.1021/acschembio.9b00678. Epub 2019 Nov 14.
2
A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes.
Molecules. 2021 Aug 18;26(16):4988. doi: 10.3390/molecules26164988.
3
Site-Specific Protein Labeling with Tetrazine Amino Acids.
Methods Mol Biol. 2018;1728:201-217. doi: 10.1007/978-1-4939-7574-7_13.
4
Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.
J Am Chem Soc. 2016 Nov 2;138(43):14423-14433. doi: 10.1021/jacs.6b08733. Epub 2016 Oct 21.
5
Hydrophilic trans-Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling.
Chembiochem. 2016 Aug 17;17(16):1518-24. doi: 10.1002/cbic.201600284. Epub 2016 Jul 7.
6
Isocyanides: Promising Functionalities in Bioorthogonal Labeling of Biomolecules.
Front Chem. 2021 Apr 29;9:670751. doi: 10.3389/fchem.2021.670751. eCollection 2021.
7
Introducing bioorthogonal functionalities into proteins in living cells.
Acc Chem Res. 2011 Sep 20;44(9):742-51. doi: 10.1021/ar200067r. Epub 2011 Jun 2.
8
Labeling proteins on live mammalian cells using click chemistry.
Nat Protoc. 2015 May;10(5):780-91. doi: 10.1038/nprot.2015.045. Epub 2015 Apr 23.
9
Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
Nat Chem. 2022 Sep;14(9):1078-1085. doi: 10.1038/s41557-022-00963-8. Epub 2022 Jul 4.
10
Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells.
ACS Chem Biol. 2021 Nov 19;16(11):2612-2622. doi: 10.1021/acschembio.1c00649. Epub 2021 Sep 30.

引用本文的文献

1
Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations.
Adv Funct Mater. 2025 May 30. doi: 10.1002/adfm.202422047.
2
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
3
Biosynthesis of Halogenated Tryptophans for Protein Engineering Using Genetic Code Expansion.
Chembiochem. 2024 Oct 16;25(20):e202400366. doi: 10.1002/cbic.202400366. Epub 2024 Sep 3.
5
Applications of genetic code expansion technology in eukaryotes.
Protein Cell. 2024 May 7;15(5):331-363. doi: 10.1093/procel/pwad051.
7
Expanding the eukaryotic genetic code with a biosynthesized 21st amino acid.
Protein Sci. 2022 Oct;31(10):e4443. doi: 10.1002/pro.4443.
9
Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201861119. doi: 10.1073/pnas.2201861119. Epub 2022 Jul 13.
10
Biosynthesis and Genetic Incorporation of 3,4-Dihydroxy-L-Phenylalanine into Proteins in Escherichia coli.
J Mol Biol. 2022 Apr 30;434(8):167412. doi: 10.1016/j.jmb.2021.167412. Epub 2021 Dec 20.

本文引用的文献

1
Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles.
Angew Chem Int Ed Engl. 2019 Jul 1;58(27):9043-9048. doi: 10.1002/anie.201903877. Epub 2019 Jun 6.
2
Bioorthogonal Engineering of Bacterial Effectors for Spatial-Temporal Modulation of Cell Signaling.
ACS Cent Sci. 2019 Jan 23;5(1):145-152. doi: 10.1021/acscentsci.8b00751. Epub 2018 Dec 27.
3
Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo.
J Am Chem Soc. 2018 Jul 11;140(27):8410-8414. doi: 10.1021/jacs.8b05093. Epub 2018 Jun 27.
4
A noncanonical amino acid-based relay system for site-specific protein labeling.
Chem Commun (Camb). 2018 Jun 26;54(52):7187-7190. doi: 10.1039/c8cc03819h.
5
Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
J Am Chem Soc. 2018 Jan 24;140(3):974-983. doi: 10.1021/jacs.7b10433. Epub 2017 Dec 29.
6
Genetically Encoded Chemical Decaging in Living Bacteria.
Biochemistry. 2018 Jan 30;57(4):446-450. doi: 10.1021/acs.biochem.7b01017. Epub 2017 Nov 29.
7
Continuous directed evolution of aminoacyl-tRNA synthetases.
Nat Chem Biol. 2017 Dec;13(12):1253-1260. doi: 10.1038/nchembio.2474. Epub 2017 Oct 16.
8
Expanding and reprogramming the genetic code.
Nature. 2017 Oct 4;550(7674):53-60. doi: 10.1038/nature24031.
9
A genetically encoded cyclobutene probe for labelling of live cells.
Chem Commun (Camb). 2017 Sep 21;53(76):10604-10607. doi: 10.1039/c7cc05580c.
10
Spirohexene-Tetrazine Ligation Enables Bioorthogonal Labeling of Class B G Protein-Coupled Receptors in Live Cells.
J Am Chem Soc. 2017 Sep 27;139(38):13376-13386. doi: 10.1021/jacs.7b05674. Epub 2017 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验