Suppr超能文献

利用多光谱辐射计评估加工番茄冠层反射率的变化来源。

Sources of Variation in Assessing Canopy Reflectance of Processing Tomato by Means of Multispectral Radiometry.

机构信息

Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy.

Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy.

出版信息

Sensors (Basel). 2019 Oct 31;19(21):4730. doi: 10.3390/s19214730.

Abstract

Canopy reflectance sensors are a viable technology to optimize the fertilization management of crops. In this research, canopy reflectance was measured through a passive sensor to evaluate the effects of either crop features (N fertilization, soil mulching, appearance of red fruits, and cultivars) or sampling methods (sampling size, sensor position, and hour of sampling) on the reliability of vegetation indices (VIs). Sixteen VIs were derived, including seven simple wavelength reflectance ratios (NIR/R460, NIR/R510, NIR/R560, NIR/R610, NIR/R660, NIR/R710, NIR/R760), seven normalized indices (NDVI, G-NDVI, MCARISAVI, OSAVI, TSAVI, TCARI), and two combined indices (TCARI/OSAVI; MCARI/OSAVI). NIR/560 and G-NDVI (Normalized Difference Vegetation Index on Greenness) were the most reliable in discriminating among fertilization rates, with results unaffected by the appearance of maturing fruits, and the most stable in response to different cultivars. Black mulching film did not affect NIR/560 and G-NDVI behavior at the beginning of the growing season, when the crop is more responsive to N management. Due to a moderate variability of NIR/560 and G-NDVI, a small sample size (5-10 observations) is sufficient to obtain reliable measurements. Performing the measurements at 11:00 and 14:00 and maintaining a greater distance (1.8 m) between plants and instrument enhanced measurement consistency. Accordingly, NIR/560 and G-NDVI resulted in the most reliable VIs.

摘要

冠层反射率传感器是优化作物施肥管理的一种可行技术。本研究通过被动传感器测量冠层反射率,评估作物特征(施肥、土壤覆盖、红色果实出现和品种)或采样方法(采样大小、传感器位置和采样时间)对植被指数(VI)可靠性的影响。共得出 16 个 VI,包括 7 个简单的波长反射率比值(NIR/R460、NIR/R510、NIR/R560、NIR/R610、NIR/R660、NIR/R710、NIR/R760),7 个归一化指数(NDVI、G-NDVI、MCARISAVI、OSAVI、TSAVI、TCARI)和 2 个组合指数(TCARI/OSAVI、MCARI/OSAVI)。在区分施肥率方面,NIR/560 和 G-NDVI(绿色归一化差值植被指数)最为可靠,不受成熟果实外观的影响,对不同品种的响应最为稳定。黑色覆盖膜在作物对 N 管理更敏感的生长季节初期不会影响 NIR/560 和 G-NDVI 的行为。由于 NIR/560 和 G-NDVI 的变异性适中,因此只需 5-10 次观测的小样本量即可获得可靠的测量结果。在 11:00 和 14:00 进行测量,并保持植株与仪器之间的较大距离(1.8 米),可以提高测量一致性。因此,NIR/560 和 G-NDVI 产生了最可靠的 VI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37af/6864711/1a45257b05ff/sensors-19-04730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验