Suppr超能文献

软人工肌肉驱动的微型机器人的受控飞行。

Controlled flight of a microrobot powered by soft artificial muscles.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2019 Nov;575(7782):324-329. doi: 10.1038/s41586-019-1737-7. Epub 2019 Nov 4.

Abstract

Flying insects capable of navigating in highly cluttered natural environments can withstand in-flight collisions because of the combination of their low inertia and the resilience of their wings, exoskeletons and muscles. Current insect-scale (less than ten centimetres long and weighing less than five grams) aerial robots use rigid microscale actuators, which are typically fragile under external impact. Biomimetic artificial muscles that are capable of large deformation offer a promising alternative for actuation because they can endure the stresses caused by such impacts. However, existing soft actuators have not yet demonstrated sufficient power density to achieve lift-off, and their actuation nonlinearity and limited bandwidth create further challenges for achieving closed-loop (driven by an input control signal that is adjusted based on sensory feedback) flight control. Here we develop heavier-than-air aerial robots powered by soft artificial muscles that demonstrate open-loop (driven by a predetermined signal without feedback), passively stable (upright during flight) ascending flight as well as closed-loop, hovering flight. The robots are driven by multi-layered dielectric elastomer actuators that weigh 100 milligrams each and have a resonance frequency of 500 hertz and power density of 600 watts per kilogram. To increase the mechanical power output of the actuator and to demonstrate flight control, we present ways to overcome challenges unique to soft actuators, such as nonlinear transduction and dynamic buckling. These robots can sense and withstand collisions with surrounding obstacles and can recover from in-flight collisions by exploiting material robustness and vehicle passive stability. We also fly two micro-aerial vehicles simultaneously in a cluttered environment. They collide with the wall and each other without suffering damage. These robots rely on offboard amplifiers and an external motion-capture system to provide power to the dielectric elastomer actuators and to control their flight. Our work demonstrates how soft actuators can achieve sufficient power density and bandwidth to enable controlled flight, illustrating the potential of developing next-generation agile soft robots.

摘要

能够在高度杂乱的自然环境中导航的飞行昆虫之所以能够承受飞行中的碰撞,是因为它们的低惯量和翅膀、外骨骼和肌肉的弹性相结合。目前的昆虫级(小于十厘米长,重量小于五克)空中机器人使用刚性微尺度执行器,这些执行器在外部冲击下通常很脆弱。能够实现大变形的仿生人工肌肉为驱动提供了一种很有前途的选择,因为它们能够承受这种冲击所产生的应力。然而,现有的软致动器尚未表现出足够的功率密度来实现起飞,其驱动的非线性和有限带宽为实现闭环(由基于传感器反馈进行调整的输入控制信号驱动)飞行控制带来了进一步的挑战。在这里,我们开发了由软人工肌肉驱动的重于空气的空中机器人,它们展示了开环(由预定信号驱动,没有反馈)、被动稳定(飞行时直立)的上升飞行,以及闭环、悬停飞行。机器人由重量为 100 毫克的多层介电弹性体致动器驱动,其共振频率为 500 赫兹,功率密度为每公斤 600 瓦。为了提高致动器的机械功率输出并展示飞行控制,我们提出了克服软致动器独特挑战的方法,例如非线性转换和动态屈曲。这些机器人可以感知并承受与周围障碍物的碰撞,并通过利用材料鲁棒性和车辆被动稳定性从飞行碰撞中恢复。我们还同时在杂乱的环境中飞行两个微型空中车辆。它们与墙壁和彼此碰撞而没有损坏。这些机器人依靠外部放大器和外部运动捕捉系统为介电弹性体致动器提供动力并控制它们的飞行。我们的工作展示了软致动器如何实现足够的功率密度和带宽以实现受控飞行,说明了开发下一代敏捷软机器人的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验