Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia.
Antioxid Redox Signal. 2020 Jan 10;32(2):79-95. doi: 10.1089/ars.2019.7864.
Cell homeostasis and redox balance are regulated in part by hydrogen sulfide (HS), a gaseous signaling molecule known as a gasotransmitter. Given its biological roles, HS has promising therapeutic potential, but controlled delivery of this reactive and hazardous gas is challenging due to its promiscuity, rapid diffusivity, and toxicity at high doses. Macromolecular and supramolecular drug delivery systems are vital for the effective delivery of many active pharmaceutical ingredients, and HS stands to benefit greatly from the tunable physical, chemical, and pharmacokinetic properties of polymeric and/or self-assembled drug delivery systems. Several types of HS-releasing macro- and supramolecular materials have been developed in the past 5 years, and the field is expanding quickly. Slow-releasing polymers, polymer assemblies, polymer nano- and microparticles, and self-assembled hydrogels have enabled triggered, sustained, and/or localized HS delivery, and many of these materials are more potent in biological assays than analogous small-molecule HS donors. HS plays a role in a number of (patho)physiological processes, including redox balance, ion channel regulation, modulation of inducible nitric oxide synthase, angiogenesis, blood pressure regulation, and more. Chemical tools designed to (i) deliver HS to study these processes, and (ii) exploit HS signaling pathways for treatment of diseases require control over the timing, rate, duration, and location of release. Development of new material approaches for HS delivery that enable long-term, triggered, localized, and/or targeted delivery of the gas will enable greater understanding of this vital signaling molecule and eventually expedite its clinical application.
细胞内稳态和氧化还原平衡部分受到硫化氢 (HS) 的调节,它是一种被称为气体信号分子的气态信号分子。鉴于其生物学作用,HS 具有很有前途的治疗潜力,但由于其混杂性、快速扩散性和高剂量时的毒性,对这种反应性和危害性气体的控制输送具有挑战性。大分子和超分子药物输送系统对于许多活性药物成分的有效输送至关重要,并且 HS 有望从聚合物和/或自组装药物输送系统的可调物理、化学和药代动力学特性中受益匪浅。 在过去的 5 年中,已经开发出了几种类型的 HS 释放型大分子和超分子材料,并且该领域正在迅速发展。缓释聚合物、聚合物组装体、聚合物纳米和微球以及自组装水凝胶使 HS 的释放能够被触发、持续和/或局部化,并且这些材料中的许多在生物学测定中比类似的小分子 HS 供体更有效。 HS 在许多(病理)生理过程中发挥作用,包括氧化还原平衡、离子通道调节、诱导型一氧化氮合酶的调节、血管生成、血压调节等。旨在(i)输送 HS 以研究这些过程,和(ii)利用 HS 信号通路治疗疾病的化学工具需要控制释放的时间、速率、持续时间和位置。 开发用于 HS 输送的新材料方法,使气体能够进行长期、触发、局部和/或靶向输送,将使人们更深入地了解这种重要的信号分子,并最终加速其临床应用。