Suppr超能文献

乳头状肾细胞癌预后的全基因组突变分析及相关风险特征

Genome-wide mutation profiling and related risk signature for prognosis of papillary renal cell carcinoma.

作者信息

Zhang Chuanjie, Zheng Yuxiao, Li Xiao, Hu Xin, Qi Feng, Luo Jun

机构信息

Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.

Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

出版信息

Ann Transl Med. 2019 Sep;7(18):427. doi: 10.21037/atm.2019.08.113.

Abstract

BACKGROUND

The papillary renal cell carcinoma (pRCC) is a rare subtype of renal cell carcinoma with limited investigation. Our study aimed to explore a robust signature to predict the prognosis of pRCC from the perspective of mutation profiles.

METHODS

In this study, we downloaded the simple nucleotide variation data of 288 pRCC samples from The Cancer Genome Atlas (TCGA) database. "GenVisR" package was utilized to visualize gene mutation profiles in pRCC. The PPI network was conducted based on the STRING database and the modification was performed via Cytoscape software (Version 3.7.1). Top 50 mutant genes were selected and Cox regression method was conducted to identify the hub prognostic mutant signature in pRCC using "survival" package. Mutation Related Signature (MRS) risk score was established by multivariate Cox regression method. Receiver Operating Characteristic (ROC) curve drawn by "timeROC" was conducted to assess the predictive accuracy of overall survival (OS) and Kaplan-Meier analysis was then performed. Relationships between mutants and expression levels were compared by Wilcox rank-sum test. Function enrichment pathway analysis for mutated genes was performed by "org.Hs.eg.db", "clusterProfiler", "ggplot2" and "enrichplot" packages. Gene Set Enrichment Analysis was exploited using the MRS as the phenotypes, which worked based on the JAVA platform. All statistical analyses were achieved by R software (version 3.5.2). P value <0.05 was considered to be significant.

RESULTS

The mutation landscape in waterfall plot revealed that a list of 49 genes that were mutated in more than 10 samples, of which 6 genes (, , , , , ) were mutated in more than 20 samples. Besides, non-synonymous was the most frequent mutation effect, and missense mutation was one of the most common mutation types in mutated genes across 248 samples. The AUC of MRS model consisted of 17 prognostic mutant signatures was 0.907 in 3-year OS prediction. Moreover, pRCC patients with high level of MRS showed the worse survival outcomes compared with that in low-level MRS group (P=0). In addition, correlation analysis indicated that 6 mutated genes () were significantly associated with corresponding expression levels. Last, functional enriched pathway analysis showed that these mutant genes were involved in multiple cancer-related crosstalk, including signaling pathway, signaling pathway, extracellular matrix (ECM)-receptor interaction or cell cycle.

CONCLUSIONS

In summary, our study was the first attempt to explore the mutation-related signature for predicting survival outcomes of pRCC based on the high-throughput data, which might provide valuable information for further uncovering the molecular pathogenesis in pRCC.

摘要

背景

乳头状肾细胞癌(pRCC)是肾细胞癌的一种罕见亚型,相关研究有限。我们的研究旨在从突变谱的角度探索一种可靠的特征来预测pRCC的预后。

方法

在本研究中,我们从癌症基因组图谱(TCGA)数据库下载了288例pRCC样本的单核苷酸变异数据。利用“GenVisR”软件包可视化pRCC中的基因突变谱。基于STRING数据库构建蛋白质-蛋白质相互作用(PPI)网络,并通过Cytoscape软件(版本3.7.1)进行修正。选择前50个突变基因,并使用“survival”软件包通过Cox回归方法识别pRCC中的核心预后突变特征。通过多变量Cox回归方法建立突变相关特征(MRS)风险评分。利用“timeROC”绘制受试者工作特征(ROC)曲线,评估总生存期(OS)的预测准确性,然后进行Kaplan-Meier分析。通过Wilcox秩和检验比较突变体与表达水平之间的关系。利用“org.Hs.eg.db”、“clusterProfiler”、“ggplot2”和“enrichplot”软件包对突变基因进行功能富集通路分析。以MRS为表型进行基因集富集分析,该分析基于JAVA平台运行。所有统计分析均通过R软件(版本3.5.2)完成。P值<0.05被认为具有统计学意义。

结果

瀑布图中的突变图谱显示,有49个基因在超过10个样本中发生突变,其中6个基因(,,,,,)在超过20个样本中发生突变。此外,非同义突变是最常见的突变效应,错义突变是248个样本中突变基因最常见的突变类型之一。由17个预后突变特征组成的MRS模型在3年OS预测中的AUC为0.907。此外,与低水平MRS组相比,高水平MRS的pRCC患者生存结局更差(P = 0)。此外,相关性分析表明6个突变基因()与相应的表达水平显著相关。最后,功能富集通路分析表明,这些突变基因参与了多种癌症相关的相互作用,包括信号通路、信号通路、细胞外基质(ECM)-受体相互作用或细胞周期。

结论

总之,我们的研究首次尝试基于高通量数据探索与突变相关的特征来预测pRCC的生存结局,这可能为进一步揭示pRCC的分子发病机制提供有价值的信息。

相似文献

3
Three-gene risk model in papillary renal cell carcinoma: a robust likelihood-based survival analysis.
Aging (Albany NY). 2020 Nov 5;12(21):21854-21873. doi: 10.18632/aging.104001.
5

引用本文的文献

1
Identification of lactylation-related biomarkers in osteoporosis from transcriptome and single-cell data.
Front Endocrinol (Lausanne). 2025 Aug 25;16:1621878. doi: 10.3389/fendo.2025.1621878. eCollection 2025.
4
Mito-fission gene prognostic model for colorectal cancer.
PeerJ. 2025 Jun 18;13:e19522. doi: 10.7717/peerj.19522. eCollection 2025.
6
Single-Cell Multi-Omics Analysis of In Vitro Post-Ovulatory-Aged Oocytes Revealed Aging-Dependent Protein Degradation.
Mol Cell Proteomics. 2025 Jan;24(1):100882. doi: 10.1016/j.mcpro.2024.100882. Epub 2024 Nov 20.
7
Biomarkers of Arginine Methylation in Diabetic Nephropathy: Novel Insights from Bioinformatics Analysis.
Diabetes Metab Syndr Obes. 2024 Sep 13;17:3399-3418. doi: 10.2147/DMSO.S472412. eCollection 2024.
8
Identification of Potential Biomarkers for Patients with DWI-Negative Ischemic Stroke.
J Mol Neurosci. 2024 Jul 12;74(3):68. doi: 10.1007/s12031-024-02229-z.

本文引用的文献

2
The Metabolic Basis of Kidney Cancer.
Cancer Discov. 2019 Aug;9(8):1006-1021. doi: 10.1158/2159-8290.CD-18-1354. Epub 2019 May 14.
3
Comprehensive Genomic Profiling Identifies Novel Genetic Predictors of Response to Anti-PD-(L)1 Therapies in Non-Small Cell Lung Cancer.
Clin Cancer Res. 2019 Aug 15;25(16):5015-5026. doi: 10.1158/1078-0432.CCR-19-0585. Epub 2019 May 13.
4
Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis.
Dev Cell. 2019 May 6;49(3):361-374. doi: 10.1016/j.devcel.2019.04.010.
6
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
7
Viruses.STRING: A Virus-Host Protein-Protein Interaction Database.
Viruses. 2018 Sep 23;10(10):519. doi: 10.3390/v10100519.
8
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
9
Heterogeneity in renal cell carcinoma.
Urol Oncol. 2017 Aug;35(8):507-515. doi: 10.1016/j.urolonc.2017.05.006. Epub 2017 May 24.
10
What is an ROC curve?
Emerg Med J. 2017 Jun;34(6):357-359. doi: 10.1136/emermed-2017-206735. Epub 2017 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验