Suppr超能文献

功能基因组学分析揭示了海蜗牛毒素生物合成所需的两个新基因。

Functional genomics analysis reveals two novel genes required for littorine biosynthesis.

作者信息

Qiu Fei, Zeng Junlan, Wang Jing, Huang Jian-Ping, Zhou Wei, Yang Chunxian, Lan Xiaozhong, Chen Min, Huang Sheng-Xiong, Kai Guoyin, Liao Zhihua

机构信息

Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China.

State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Centre for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

出版信息

New Phytol. 2020 Mar;225(5):1906-1914. doi: 10.1111/nph.16317. Epub 2019 Nov 28.

Abstract

Some medicinal plants of the Solanaceae produce pharmaceutical tropane alkaloids (TAs), such as hyoscyamine and scopolamine. Littorine is a key biosynthetic intermediate in the hyoscyamine and scopolamine biosynthetic pathways. However, the mechanism underlying littorine formation from the precursors phenyllactate and tropine is not completely understood. Here, we report the elucidation of littorine biosynthesis through a functional genomics approach and functional identification of two novel biosynthesis genes that encode phenyllactate UDP-glycosyltransferase (UGT1) and littorine synthase (LS). UGT1 and LS are highly and specifically expressed in Atropa belladonna secondary roots. Suppression of either UGT1 or LS disrupted the biosynthesis of littorine and its TA derivatives (hyoscyamine and scopolamine). Purified His-tagged UGT1 catalysed phenyllactate glycosylation to form phenyllactylglucose. UGT1 and LS co-expression in tobacco leaves led to littorine synthesis if tropine and phenyllactate were added. This identification of UGT1 and LS provides the missing link in littorine biosynthesis. The results pave the way for producing hyoscyamine and scopolamine for medical use by metabolic engineering or synthetic biology.

摘要

一些茄科药用植物能产生药用托烷生物碱(TA),如莨菪碱和东莨菪碱。樟柳碱是莨菪碱和东莨菪碱生物合成途径中的关键生物合成中间体。然而,由前体苯乳酸和托品形成樟柳碱的潜在机制尚未完全明确。在此,我们报告通过功能基因组学方法阐明樟柳碱生物合成过程,并对两个新的生物合成基因进行功能鉴定,这两个基因分别编码苯乳酸UDP - 糖基转移酶(UGT1)和樟柳碱合酶(LS)。UGT1和LS在颠茄次生根中高度且特异性表达。抑制UGT1或LS会破坏樟柳碱及其TA衍生物(莨菪碱和东莨菪碱)的生物合成。纯化的His标签UGT1催化苯乳酸糖基化形成苯乳酸葡萄糖。如果添加托品和苯乳酸,UGT1和LS在烟草叶片中共表达会导致樟柳碱的合成。UGT1和LS的鉴定填补了樟柳碱生物合成中缺失的环节。这些结果为通过代谢工程或合成生物学生产药用莨菪碱和东莨菪碱铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验