Suppr超能文献

受人类探索程序启发的触觉材料分析与分类。

Haptic Material Analysis and Classification Inspired by Human Exploratory Procedures.

出版信息

IEEE Trans Haptics. 2020 Apr-Jun;13(2):404-424. doi: 10.1109/TOH.2019.2952118. Epub 2019 Nov 8.

Abstract

We present a framework for the acquisition and parametrization of object material properties. The introduced acquisition device, denoted as Texplorer2, is able to extract surface material properties while a human operator is performing exploratory procedures. Using the Texplorer2, we scanned 184 material classes which we labeled according to biological, chemical, and geological naming conventions. Based on these real material recordings, we introduce a novel set of mathematical features which align with corresponding material properties defined in perceptual studies from related work and classify the materials using common machine learning techniques. Validation results of the proposed multi-modal features lead to an overall classification accuracy of 90.2% ± 1.2% and an F[Formula: see text] score of 0.90 ± 0.01 using the random forest classifier. For the sake of comparison, a deep neural network is trained and tested on images of the material surfaces; it outperforms (90.7% ± 1.0%) the hand-crafted feature-based approach yet leads to more critical misclassifications in terms of the proposed taxonomy.

摘要

我们提出了一种用于获取和参数化物体材料属性的框架。所引入的采集设备,称为 Texplorer2,能够在人工操作员执行探索程序时提取表面材料属性。使用 Texplorer2,我们扫描了 184 种材料类别,这些类别是根据生物、化学和地质命名规范进行标记的。基于这些真实材料记录,我们引入了一组新的数学特征,这些特征与相关工作中感知研究中定义的相应材料特性相匹配,并使用常见的机器学习技术对材料进行分类。所提出的多模态特征的验证结果导致使用随机森林分类器的总体分类准确率为 90.2%±1.2%,F[Formula: see text]得分为 0.90±0.01。为了进行比较,对材料表面的图像进行了深度神经网络的训练和测试;它优于(90.7%±1.0%)基于手工制作特征的方法,但在提出的分类法方面导致更多关键的误分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验