Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K.
Centre for Atherothrombosis and Metabolic Disease , Hull York Medical School , Hull HU6 7RX , U.K.
ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43902-43919. doi: 10.1021/acsami.9b16119. Epub 2019 Nov 13.
Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an extracellular polymeric substance (EPS) matrix, which confers increased antibiotic resistance and host immune evasion. Therefore, disruption of this matrix is essential to tackle the biofilm-embedded bacteria. Here, we propose a novel nanotechnology to do this, based on protease-functionalized nanogel carriers of antibiotics. Such active antibiotic nanocarriers, surface coated with the protease Alcalase 2.4 L FG, "digest" their way through the biofilm EPS matrix, reach the buried bacteria, and deliver a high dose of antibiotic directly on their cell walls, which overwhelms their defenses. We demonstrated their effectiveness against six wound biofilm-forming bacteria, , , , , , and . We confirmed a 6-fold decrease in the biofilm mass and a substantial reduction in bacterial cell density using fluorescence, atomic force, and scanning electron microscopy. Additionally, we showed that co-treatments of ciprofloxacin and Alcalase-coated Carbopol nanogels led to a 3-log reduction in viable biofilm-forming cells when compared to ciprofloxacin treatments alone. Encapsulating an equivalent concentration of ciprofloxacin into the Alcalase-coated nanogel particles boosted their antibacterial effect much further, reducing the bacterial cell viability to below detectable amounts after 6 h of treatment. The Alcalase-coated nanogel particles were noncytotoxic to human adult keratinocyte cells (HaCaT), inducing a very low apoptotic response in these cells. Overall, we demonstrated that the Alcalase-coated nanogels loaded with a cationic antibiotic elicit very strong biofilm-clearing effects against wound-associated biofilm-forming pathogenic bacteria. This nanotechnology approach has the potential to become a very powerful treatment of chronically infected wounds with biofilm-forming bacteria.
生物膜在慢性创面中普遍存在,一旦形成,就很难去除,这与不良预后和高死亡率有关。生物膜由附着在表面的细菌嵌入细胞外聚合物基质(EPS)组成,这赋予了它们更高的抗生素耐药性和宿主免疫逃避能力。因此,破坏这种基质对于解决生物膜中嵌入的细菌至关重要。在这里,我们提出了一种基于蛋白酶功能化纳米凝胶抗生素载体的新型纳米技术来实现这一目标。这种活性抗生素纳米载体的表面涂有蛋白酶 Alcalase 2.4 L FG,“消化”它们穿过生物膜 EPS 基质,到达埋藏的细菌,并直接在细胞壁上输送高剂量的抗生素,从而克服它们的防御能力。我们证明了它们对六种创面生物膜形成细菌的有效性,包括 、 、 、 、 和 。我们通过荧光、原子力和扫描电子显微镜证实,生物膜质量降低了 6 倍,细菌细胞密度也显著降低。此外,我们还表明,与单独使用环丙沙星相比,将环丙沙星和涂有 Alcalase 的 Carbopol 纳米凝胶共同处理可使活菌生物膜形成细胞减少 3 个对数级。将相当于环丙沙星浓度的环丙沙星包封在涂有 Alcalase 的纳米凝胶颗粒中,进一步增强了其抗菌效果,在 6 小时的治疗后,将细菌细胞活力降低到无法检测的水平以下。涂有 Alcalase 的纳米凝胶颗粒对人成角质细胞(HaCaT)无细胞毒性,在这些细胞中诱导非常低的凋亡反应。总的来说,我们证明了负载阳离子抗生素的 Alcalase 涂覆纳米凝胶对与创面相关的生物膜形成病原菌具有很强的生物膜清除作用。这种纳米技术方法有可能成为治疗慢性感染创面生物膜形成细菌的非常有效的方法。